586 research outputs found
Rotational Mixing and Lithium Depletion
I review basic observational features in Population I stars which strongly
implicate rotation as a mixing agent; these include dispersion at fixed
temperature in coeval populations and main sequence lithium depletion for a
range of masses at a rate which decays with time. New developments related to
the possible suppression of mixing at late ages, close binary mergers and their
lithium signature, and an alternate origin for dispersion in young cool stars
tied to radius anomalies observed in active young stars are discussed. I
highlight uncertainties in models of Population II lithium depletion and
dispersion related to the treatment of angular momentum loss. Finally, the
origins of rotation are tied to conditions in the pre-main sequence, and there
is thus some evidence that enviroment and planet formation could impact stellar
rotational properties. This may be related to recent observational evidence for
cluster to cluster variations in lithium depletion and a connection between the
presence of planets and stellar lithium depletion.Comment: 6 pages, 1 figure, to appear in proceedings of IAU Symp. 268, in
pres
Li I and K I Scatter in Cool Pleiades Dwarfs
We utilize high-resolution (R~60,000), high S/N (~100) spectroscopy of 17
cool Pleiades dwarfs to examine the confounding star-to-star scatter in the
6707 Li I line strengths in this young cluster. Our Pleiads, selected for their
small projected rotational velocity and modest chromospheric emission, evince
substantial scatter in the linestrengths of 6707 Li I feature that is absent in
the 7699 K I resonance line. The Li I scatter is not correlated with that in
the high-excitation 7774 O I feature, and the magnitude of the former is
greater than the latter despite the larger temperature sensitivity of the O I
feature. These results suggest that systematic errors in linestrength
measurements due to blending, color (or color-based T_eff) errors, or line
formation effects related to an overlying chromosphere are not the principal
source of Li I scatter in our stars. There do exist analytic spot models that
can produce the observed Li scatter without introducing scatter in the K I line
strengths or the color-magnitude diagram. However, these models predict factor
of >3 differences in abundances derived from the subordinate 6104 and resonance
6707 Li I features; we find no difference in the abundances determined from
these two features. These analytic spot models also predict CN line strengths
significantly larger than we observe in our spectra. The simplest explanation
of the Li, K, CN, and photometric data is that there must be a real abundance
component to the Pleiades Li dispersion. We suggest that this real abundance
component is the manifestation of relic differences in erstwhile
pre-main-sequence Li burning caused by effects of surface activity on stellar
structure. We discuss observational predictions of these effects.Comment: 35 pages, 7 figures; accepted by Ap
The Solar Heavy-Element Abundances. I. Constraints from Stellar Interiors
The latest solar atmosphere models including non-LTE corrections and three-dimensional hydrodynamic convection simulations predict a significant reduction in the solar metal abundance. This leads to a serious conflict between helioseismic data and the predictions of solar interiors models. We demonstrate that the helioseismic constraints on the surface convection zone depth and helium abundance combined with stellar interiors models can be used to constrain chemical composition. A detailed examination of the errors in the theoretical models disfavors strongly (disagreeing at the 15 σ level with the seismic data) the proposed new low abundance, while the models constructed with the older and higher solar abundances are consistent (within 2 σ). We then use the sensitivity of the seismic properties to abundance changes to invert the problem and infer a seismic solar heavy-element abundance mix with two components: meteoritic abundances and the light metals CNONe. Seismic degeneracies between the best solutions for the elements arise for changes in the relative CNONe abundances and their effects are quantified. We obtain Fe/H = 7.50 ± 0.045 ± 0.003(CNNe) and O/H = 8.86 ± 0.041 ± 0.025(CNNe) on the logarithmic scale, where H = 12 for the relative CNNe mixtures in the Grevese & Sauval mixture; the second error term reflects the uncertainty in the overall abundance scale from errors in the C, N, and Ne abundances relative to oxygen. These are consistent within the errors with the previous standard solar mixture but in strong conflict with the low oxygen abundance inferred from the three-dimensional hydro models. Changes in the Ne abundance can mimic changes in oxygen for the purposes of scalar constraints. However, models constructed with low oxygen and high neon are inconsistent with the solar sound speed profile. Implications for the solar abundance scale are discussed
Stellar Mixing and the Primordial Lithium Abundance
We compare the properties of recent samples of the lithium abundances in halo
stars to one another and to the predictions of theoretical models including
rotational mixing, and we examine the data for trends with metal abundance. We
find from a KS test that in the absence of any correction for chemical
evolution, the Ryan, Norris, & Beers (1999} sample is fully consistent with
mild rotational mixing induced depletion and, therefore, with an initial
lithium abundance higher than the observed value. Tests for outliers depend
sensitively on the threshold for defining their presence, but we find a
1045% probability that the RNB sample is drawn from the rotationally mixed
models with a 0.2 dex median depletion (with lower probabilities corresponding
to higher depletion factors). When chemical evolution trends (Li/H versus Fe/H)
are treated in the linear plane we find that the dispersion in the RNB sample
is not explained by chemical evolution; the inferred bounds on lithium
depletion from rotational mixing are similar to those derived from models
without chemical evolution. We find that differences in the equivalent width
measurements are primarily responsible for different observational conclusions
concerning the lithium dispersion in halo stars. The standard Big Bang
Nucleosynthesis predicted lithium abundance which corresponds to the deuterium
abundance inferred from observations of high-redshift, low-metallicity QSO
absorbers requires halo star lithium depletion in an amount consistent with
that from our models of rotational mixing, but inconsistent with no depletion.Comment: 39 pages, 9 figures; submitted Ap
- …