245 research outputs found

    Modulation of the severe CD4+ T-cell loss caused by a pathogenic simian–human immunodeficiency virus by replacement of the subtype B vpu with the vpu from a subtype C HIV-1 clinical isolate

    Get PDF
    AbstractPreviously, we showed that the Vpu protein from subtype C human immunodeficiency virus type 1 (HIV-1) was efficiently targeted to the cell surface, suggesting that this protein has biological properties that differ from the well-studied subtype B Vpu protein. In this study, we have further analyzed the biological properties of the subtype C Vpu protein. Flow cytometric analysis revealed that the subtype B Vpu (strain HXB2) was more efficient at down-regulating CD4 surface expression than the Vpu proteins from four subtype C clinical isolates. We constructed a simian-human immunodeficiency virus virus, designated as SHIVSCVpu, in which the subtype B vpu gene from the pathogenic SHIVKU-1bMC33 was substituted with the vpu from a clinical isolate of subtype C HIV-1 (strain C.96.BW16B01). Cell culture studies revealed that SHIVSCVpu replicated with slightly reduced kinetics when compared with the parental SHIVKU-1bMC33 and that the viral Env and Gag precursor proteins were synthesized and processed similarly compared to the parental SHIVKU-1bMC33. To determine if substitution of the subtype C Vpu protein affected the pathogenesis of the virus, three pig-tailed macaques were inoculated with SHIVSCVpu and circulating CD4+ T-cell levels and viral loads were monitored for up to 44 weeks. Our results show that SHIVSCVpu caused a more gradual decline in the rate of CD4+ T cells in pig-tailed macaques compared to those inoculated with parental subtype B SHIVKU-1bMC33. These results show for the first time that different Vpu proteins of HIV-1 can influence the rate at which CD4+ T-cell loss occurs in the SHIV/pig-tailed macaque model

    Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain

    Get PDF
    Acknowledgments This research was supported in part by the US National Science Foundation, Plant Genome Research Program (Grant #IOS 0701119) awarded to D.E.S, M.L.G and S.R.M.P. We acknowledge Dr. Kathleen Yeater for consultation on analyzing marker-trait associations using SAS JMP Genomics. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the US Department of Agriculture or Texas A&M AgriLife Research, and does not imply its approval to the exclusion of other products that also can be suitable. USDA is an equal opportunity provider and employer.Peer reviewedPublisher PD

    Systemic Infection and Limited Replication of SHIV Vaccine Virus in Brains of Macaques Inoculated Intracerebrally with Infectious Viral DNA

    Get PDF
    AbstractSHIV deleted in two accessory genes, ΔvpuΔnef SHIVPPC, functioned well as a vaccine against later challenge with highly pathogenic SHIVKU, and it was able to reach the brain after oral inoculation of live virus. In this study, the proviral genome cloned into a plasmid was inoculated as DNA intracerebrally and spread systemically. Few regions of the brain had detectable proviral DNA by real-time PCR. Two measures of virus replication, detection of viral mRNA expression and circular proviral DNA, were negative for those brain regions, with the exception of the infection site in the right parietal lobe, whereas lymphoid tissues were positive by both measures. Histopathological analyses of all the sampled brain and spinal cord regions did not reveal any abnormalities. Despite intracerebral inoculation of the viral DNA, the brain was not targeted for high levels of virus replication

    Natural variation in a molybdate transporter controls grain molybdenum concentration in rice

    Get PDF
    © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust Molybdenum (Mo) is an essential micronutrient for most living organisms, including humans. Cereals such as rice (Oryza sativa) are the major dietary source of Mo. However, little is known about the genetic basis of the variation in Mo content in rice grain. We mapped a quantitative trait locus (QTL) qGMo8 that controls Mo accumulation in rice grain by using a recombinant inbred line population and a backcross introgression line population. We identified a molybdate transporter, OsMOT1;1, as the causal gene for this QTL. OsMOT1;1 exhibits transport activity for molybdate, but not sulfate, when heterogeneously expressed in yeast cells. OsMOT1;1 is mainly expressed in roots and is involved in the uptake and translocation of molybdate under molybdate-limited condition. Knockdown of OsMOT1;1 results in less Mo being translocated to shoots, lower Mo concentration in grains and higher sensitivity to Mo deficiency. We reveal that the natural variation of Mo concentration in rice grains is attributed to the variable expression of OsMOT1;1 due to sequence variation in its promoter. Identification of natural allelic variation in OsMOT1;1 may facilitate the development of rice varieties with Mo-enriched grain for dietary needs and improve Mo nutrition of rice on Mo-deficient soils

    The presence of the casein kinase II phosphorylation sites of Vpu enhances the CD4+ T cell loss caused by the simian–human immunodeficiency virus SHIVKU-lbMC33 in pig-tailed macaques

    Get PDF
    AbstractThe simian–human immunodeficiency virus (SHIV)/ macaque model for human immunodeficiency virus type 1 has become a useful tool to assess the role of Vpu in lentivirus pathogenesis. In this report, we have mutated the two phosphorylated serine residues of the HIV-1 Vpu to glycine residues and have reconstructed a SHIV expressing this nonphosphorylated Vpu (SHIVS52,56G). Expression studies revealed that this protein was localized to the same intracellular compartment as wild-type Vpu. To determine if this virus was pathogenic, four pig-tailed macaques were inoculated with SHIVS52,56G and virus burdens and circulating CD4+ T cells monitored up to 1 year. Our results indicate that SHIVS52,56G caused rapid loss in the circulating CD4+ T cells within 3 weeks of inoculation in one macaque (CC8X), while the other three macaques developed no or gradual numbers of CD4+ T cells and a wasting syndrome. Histological examination of tissues revealed that macaque CC8X had lesions in lymphoid tissues (spleen, lymph nodes, and thymus) that were typical for macaques inoculated with pathogenic parental SHIVKU-1bMC33 and had no lesions within the CNS. To rule out that macaque CC8X had selected for a virus in which there was reversion of the glycine residues at positions 52 and 56 to serine residues and/or compensating mutations occurred in other genes associated with CD4 down-regulation, sequence analysis was performed on amplified vpu sequences isolated from PBMC and from several lymphoid tissues at necropsy. Sequence analysis revealed a reversion of the glycine residues back to serine residues in this macaque. The other macaques maintained low virus burdens, with one macaque (P003) developing a wasting syndrome between months 9 and 11. Histological examination of tissues from this macaque revealed a thymus with severe atrophy that was similar to that of a previously reported macaque inoculated with a SHIV lacking vpu (Virology 293, 2002, 252). Sequence analysis revealed no reversion of the glycine residues in the vpu sequences isolated from this macaque. These results contrast with those from four macaques inoculated with the parental pathogenic SHIVKU-1bMC33, all of which developed severe CD4+ T cell loss within 1 month after inoculation. Taken together, these results indicate that casein kinase II phosphorylation sites of Vpu contributes to the pathogenicity of the SHIVKU-1bMC33 and suggest that the SHIVKU-1bMC33/pig-tailed macaque model will be useful in analyzing amino acids/domains of Vpu that contribute to the pathogenesis of HIV-1

    The Chromosomal Passenger Complex Activates Polo Kinase at Centromeres

    Get PDF
    The coordinated activities at centromeres of two key cell cycle kinases, Polo and Aurora B, are critical for ensuring that the two sister kinetochores of each chromosome are attached to microtubules from opposite spindle poles prior to chromosome segregation at anaphase. Initial attachments of chromosomes to the spindle involve random interactions between kinetochores and dynamic microtubules, and errors occur frequently during early stages of the process. The balance between microtubule binding and error correction (e.g., release of bound microtubules) requires the activities of Polo and Aurora B kinases, with Polo promoting stable attachments and Aurora B promoting detachment. Our study concerns the coordination of the activities of these two kinases in vivo. We show that INCENP, a key scaffolding subunit of the chromosomal passenger complex (CPC), which consists of Aurora B kinase, INCENP, Survivin, and Borealin/Dasra B, also interacts with Polo kinase in Drosophila cells. It was known that Aurora A/Bora activates Polo at centrosomes during late G2. However, the kinase that activates Polo on chromosomes for its critical functions at kinetochores was not known. We show here that Aurora B kinase phosphorylates Polo on its activation loop at the centromere in early mitosis. This phosphorylation requires both INCENP and Aurora B activity (but not Aurora A activity) and is critical for Polo function at kinetochores. Our results demonstrate clearly that Polo kinase is regulated differently at centrosomes and centromeres and suggest that INCENP acts as a platform for kinase crosstalk at the centromere. This crosstalk may enable Polo and Aurora B to achieve a balance wherein microtubule mis-attachments are corrected, but proper attachments are stabilized allowing proper chromosome segregation

    Drosophila Mgr, a Prefoldin subunit cooperating with von Hippel Lindau to regulate tubulin stability

    Get PDF
    Mutations in Drosophila merry-go-round (mgr) have been known for over two decades to lead to circular mitotic figures and loss of meiotic spindle integrity. However, the identity of its gene product has remained undiscovered. We now show that mgr encodes the Prefoldin subunit counterpart of human von Hippel Lindau binding-protein 1. Depletion of Mgr from cultured cells also leads to formation of monopolar and abnormal spindles and centrosome loss. These phenotypes are associated with reductions of tubulin levels in both mgr flies and mgr RNAi-treated cultured cells. Moreover, mgr spindle defects can be phenocopied by depleting β-tubulin, suggesting Mgr function is required for tubulin stability. Instability of β-tubulin in the mgr larval brain is less pronounced than in either mgr testes or in cultured cells. However, expression of transgenic β-tubulin in the larval brain leads to increased tubulin instability, indicating that Prefoldin might only be required when tubulins are synthesized at high levels. Mgr interacts with Drosophila von Hippel Lindau protein (Vhl). Both proteins interact with unpolymerized tubulins, suggesting they cooperate in regulating tubulin functions. Accordingly, codepletion of Vhl with Mgr gives partial rescue of tubulin instability, monopolar spindle formation, and loss of centrosomes, leading us to propose a requirement for Vhl to promote degradation of incorrectly folded tubulin in the absence of functional Prefoldin. Thus, Vhl may play a pivotal role: promoting microtubule stabilization when tubulins are correctly folded by Prefoldin and tubulin destruction when they are not

    Genome-wide association mapping for grain manganese in rice (Oryza sativa L.) using a multi-experiment approach

    Get PDF
    Funding Information: Acknowledgements This research was partly supported by the US National Science Foundation, Plant Genome Research Program (grant #IOS 0701119 to DES, MLG and SRMP) and The US National Institutes of Health (grant 2P4ES007373 to MLG and DES). PR is a PhD student funded by the Thai Government Scholarship.Peer reviewedPostprin
    corecore