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Mutations in Drosophila merry-go-round (mgr) have been known
for over two decades to lead to circular mitotic figures and loss of
meiotic spindle integrity. However, the identity of its gene product
has remained undiscovered. We now show that mgr encodes the
Prefoldin subunit counterpart of human von Hippel Lindau bind-
ing-protein 1. Depletion of Mgr from cultured cells also leads to
formation of monopolar and abnormal spindles and centrosome
loss. These phenotypes are associated with reductions of tubulin
levels in both mgr flies and mgr RNAi-treated cultured cells. More-
over, mgr spindle defects can be phenocopied by depleting β-tu-
bulin, suggesting Mgr function is required for tubulin stability.
Instability of β-tubulin in the mgr larval brain is less pronounced
than in either mgr testes or in cultured cells. However, expression
of transgenic β-tubulin in the larval brain leads to increased tubu-
lin instability, indicating that Prefoldin might only be required
when tubulins are synthesized at high levels. Mgr interacts with
Drosophila von Hippel Lindau protein (Vhl). Both proteins interact
with unpolymerized tubulins, suggesting they cooperate in regu-
lating tubulin functions. Accordingly, codepletion of Vhl with Mgr
gives partial rescue of tubulin instability, monopolar spindle for-
mation, and loss of centrosomes, leading us to propose a require-
ment for Vhl to promote degradation of incorrectly folded tubulin
in the absence of functional Prefoldin. Thus, Vhl may play a pivotal
role: promoting microtubule stabilization when tubulins are cor-
rectly folded by Prefoldin and tubulin destruction when they are not.

folding | chaperone | Gim | E3 ubiquitin ligase

Eukaryotes have a complex molecular machinery that promotes
the folding and assembly of the actin and tubulin subunits

of microfilaments and microtubules (MTs). Several protein
complexes and ancillary proteins are involved in assembling
αβ-tubulin dimers: chaperonin containing tailless protein (CCT),
the prefoldin complex, phosducin-like CCT regulatory proteins,
and five cofactors [reviewed by Lundin et al. (1)]. Prefoldin is
a hexameric protein complex (2) thought to bind to partially
folded tubulin and actin molecules from the ribosome (3–5).
One component of the prefoldin complex also interacts with

the tumor suppressor Von Hippel Lindau (Vhl) protein and is
known as Von Hippel Lindau binding protein 1 (VBP1) (6). The
Vhl protein is a multifunctional adapter protein that influences
multiple transcriptional pathways (for review, see refs. 7 and 8),
as well as the functions of the collagen IV and fibronectin ex-
tracellular matrix and MTs. Its best-characterized function is in
a complex with Cullin2 as an E3 ubiquitin-protein ligase that
targets hypoxia-inducible factor α (HIF1α) for destruction (9, 10).
Vhl interacts with the CCT to mediate the formation of the Vhl-
ElonginB/C-Cullin2 complex (VBC) (11–15). Therefore, the in-
teraction between Vhl and the prefoldin complex could be rele-
vant for the folding of the VBC. However, Vhl also interacts with
cytoplasmic MTs: in mitosis to influence spindle orientation (16)
and in interphase to inhibit catastrophe and promote rescue (17,
18). Such an effect could account for the role of Vhl in stabilizing

MTs in Drosophila follicle cells to maintain the integrity of this
epithelium (19). Vhl is also required with the GSK-3β protein
kinase to maintain the stability of the ciliary axoneme (20–22).
Genetic studies first identified prefoldin in yeast through

mutants that could still fold tubulin but more slowly (hence the
name GIM: genes involved in microtubule biogenesis) (23). Loss
of prefoldin in Caenorhabditis elegans is lethal because of a high
demand for tubulin in mitotic cells in the embryo (24). In plants,
prefoldin 6 has been shown to be required for normal MT
dynamics and organization (25). Knockout of Prefoldin 1 or
mutation in Prefoldin 5 of mice lead to a variety of defects
characteristic of tubulin functions in cilia or in the CNS (26, 27).
We now identify merry-go-round (mgr), a Drosophila gene

identified over two decades ago, as encoding the prefoldin 3
(Pfdn3)/VBP1/Gim2 subunit. We show that the characteristic
monopolar mitotic spindles of this mutant arise because of di-
minished levels of tubulin subunits. We also show that mgr
mutants cannot stabilize tubulin following overexpression of
a tubulin transgene. Finally, our studies show that Mgr can
physically interact with Vhl. Moreover, depletion of Vhl rescues
the destabilization of tubulin resulting from loss of Mgr. This
finding leads us to suggest that the E3 ubiquitin-protein ligase
properties of Vhl may be required for the degradation of in-
correctly folded tubulin, suggesting that Vhl can also contribute
to MT dynamics through the regulation of tubulin degradation.

Results
Mgr Is a Subunit of the Highly Conserved Gim Complex/Prefoldin. The
mgr gene was originally recovered as an X-ray–induced mutant
resulting in lethality late in development associated with circular
mitotic figures in larval neuroblasts (28). We confirmed this
phenotype by immunostaining the CNS to reveal MTs and cen-
trosomal antigens in several mutant alleles of mgr and by counting
proportions of cells at different stages of mitosis (Fig. 1 A and B,
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and Fig. S1 A and B). The prometaphase-like cells in such
preparations could have bipolar spindles that may lack one or
both centrosomes or monopolar spindles having one or two

centrosomes at the single pole (Fig. 1A and Fig. S1 A and B).
These centrosomes were positive for several known Drosophila
centrosomal antigens (Fig. S1B). The mitotic index was elevated
some twofold over that in wild-type larval brains and the ratio of
metaphase:anaphase figures was elevated by two- to threefold
over wild-type, depending upon the allelic combination (Fig. 1B).
Taken together, these data are indicative of a delay in pro-
gression through the mitotic cycle. Previous phase-contrast
images of spermatocytes of mgr mutants suggested the absence
of meiotic spindles (28). To determine whether this suggestion
was correct, we used an antibody recognizing both the β1-tubulin
isoform and the β2-tubulin male germ-line–specific isoform to
immunostain the testes of mgrl4/mgr5 transheterozygotes, a strong
hypomorphic mutant combination that shows pharate lethality
but gives some sterile adults. This process revealed thatmgrl4/mgr5

had sufficient MTs to permit the premeiotic mitosis (arrowheads
and magnification in Fig. 1C). However, mature (white dashed
outlined cysts) but not young primary spermatocyte cysts had
reduced MTs (Fig. 1C and Fig. S1C) such that the meiotic spin-
dles were either absent or highly abnormal (Fig. 1D). Western
blotting with antibodies specific for α-tubulin, β1-tubulin, and β2-
tubulin (29) showed that the levels of all three tubulins were re-
duced in mgrl4/mgr5 mutant testes (Fig. 1E), thus accounting for
the spindle defects.
To understand why reduction in levels of the mgr gene product

might have such an effect on tubulin levels, we set out to identify
the mgr gene product. Small deficiencies [Df(3R)thoR1, Df(3R)
pros235, and Df(3R)pros640] (30), which each fail to complement
mgr, placed the mgr gene to 86E4 in a region containing 14
predicted genes (Fig. S2 A and B). Using a combination of RNAi
to identify mitotic phenotypes resulting from the knockdown of
each of these genes (Fig. S2 C–F) together with the sequencing
of candidate genes from chromosomes carrying mgr mutant
alleles, we identified the predicted gene CG6719 as mgr. We
confirmed its identity by showing that lethality of mgrl4/mgr1

mutant, a combination showing pharate lethality, could be res-
cued with a CG6719 transgene. In addition to the mitotic phe-
notype, RNAi-mediated knockdown of mgr led to a reduction of
cytoplasmic MTs in interphase cells (Fig. S2G).
Sequencing of the mgr mutant alleles revealed them to repre-

sent a variety of deletion, frame-shift, and nonsense mutations
(Fig. S2H and SI Materials and Methods). In this study we focused
on two mutant alleles:mgrl4, a null mutant having a deletion in the
5′UTR; and mgr5, which because of a nonsense mutation, pro-
duces a truncated protein (not detectable by Western blot) and
additionally carries a 41-bp deletion in its 3′UTR. Immunostain-
ing on wild-type cells using the anti-Mgr antibody we generated
showed that the protein localizes throughout the cytoplasm in
testis, brain, and cultured cells at all cell-cycle stages (Fig. S3).
Western blots on protein extracts of testes and larval CNS con-
firmed that the protein was not detectable in mgrl4/mgr5 mutants
(Fig. 1F). The sequence of mgr revealed it to encode a subunit of
the Gim/prefoldin complex; Mgr shows 37% amino acid identity
with its yeast homolog PAC10 and 57% with its human homolog
VBP1/Pfdn3/Gim2. Thus, the phenotypes of mgr mutants would
be consistent with the improper folding and degradation of tubulin
in the absence of the Prefoldin complex. The greater reductions in
tubulin levels in the testes than in the CNS would account for the
stronger phenotype in the spermatocytes (Fig. 1F).

Spindle Abnormalities Result from Tubulin Destabilization Following
Mgr Depletion. To gain further insight into how Mgr depletion
affects spindle formation, we turned to RNAi in the DMEL-2
Drosophila cell line (Fig. 2). Transfection with mgr dsRNA for
6 d increased the proportion of cells with monopolar spindles
similar in appearance to those seen in mgr mutant neuroblasts
and greatly above the background level of mitotic abnormalities
typical of this cell line (Fig. 2 A and B). Further cycles of mgr
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Fig. 1. The mgr mutant flies have microtubule-based abnormalities. (A)
Representative mitotic spindles from squashed preparations of wild-type
(Oregon R) and mgr (mgr5/mgrl4) mutant third-instar larval brains stained to
reveal microtubules (β-tubulin, green), centrosome (Spd-2, red), and DNA
(Dapi, blue). (Right column, Left and Right) Images of mgr neuroblasts show
examples of monopolar spindles; (Center) a bipolar spindle of abnormal
morphology. (Scale bar, 5 μm.) (B) Table indicating the mitotic defects ob-
served in wild-type,mgr5/mgrl4 (compared with wild-type, mitotic defects P =
0.001; monopolar spindles P = 0.021), andmgrl4/Df (compared with wild-type
P < 0.0001 for both mitotic defects and monopolar spindles); P values from
χ2 analysis. Mitotic defects comprised monopolar and disorganized spindles
(at least five independent brains scored). (C) Testes from wild-type and mgr
(mgr5/mgrl4) mutant flies stained to reveal microtubules (β-tubulin, green)
andDNA (Dapi, blue). (Scale bar, 10 μm.) (Upper) Young cysts (spermatogonia)
in the apical region: arrowheads indicatemitotic cysts, shown in the Inset at 3×
magnification; (Lower) Late primary spermatocytes with impaired microtu-
bule network particularly in meiosis (compare outlined cysts). (D) Meiosis I
spindles from wild-type and mgr stained to reveal microtubules (β-tubulin,
green), centrosomes (Spd-2, red), and DNA (Dapi, blue). (Scale bar, 10 μm.) Of
the meiotic spindles observed in mgr mutant testes, 100% were abnormal
comparedwith wild-type where no abnormalities were observed (at least five
testes scored and >208 complete cysts observed, P value from Student t test <
0.0001). (E) Western blots of the ubiquitous α- and β1-tubulin and the testes
specific β2-tubulin isoform in testes protein extracts from wild-type and mgr
mutantflies, showing that all three tubulin levels are reduced inmgrmutants.
Amido black staining is the loading control (Ctrl). (F) Western blot of β-tubulin
and Mgr in wild-type and mgr CNS and testes protein extracts, showing the
absence of Mgr and the differential depletion of tubulin according to the
tissue. Amido black staining is the loading control (Ctrl).
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RNAi did not lead to any significant further increase in spindle
abnormalities such that after 12 d, some 60% of mitotic cells had
monopolar or disorganized spindles. Codepletion of BubR1 or
Mad2 and Mgr led to a decrease of abnormal spindles and a
restoration of a normal mitotic index compared with mgr RNAi
alone (Fig. S4). These results suggest that cells are delayed in
mitotic progression after Mgr depletion in response to the spindle
assembly check point. To determine whether spindle abnormali-
ties were related to centrosome defects, we counted Dplp+ punc-
tae in interphase cells after the same period of Mgr depletion.
This process revealed a progressive loss of centrosomes from
cells lagging behind the appearance of spindle defects such that
40% of cells had no centrosomes by day 12 (Fig. 2 C and D). This
lag in the loss of centrosomes could be because of either or both
defects in centrosome duplication or segregation as a conse-
quence of the spindle defects. To address whether Mgr depletion
affected centriole structure, we carried out electron microscopy,
which revealed abnormalities typical of centriole duplication/
formation defects; 20% of the centrioles were incomplete and
composed of singlet MTs rather than doublets or triplets, as in
control cells (Fig. 2E).
Immunoblotting revealed that Mgr depletion led to a reduc-

tion in β-tubulin levels by ∼70% (Fig. 2F), also apparent by
immunofluorescence (Fig. S2G). Depletion of the Pfdn4 Pre-
foldin subunit also led not only to a similar reduction in β-
tubulin, but also in Mgr levels, indicating the importance of
interactions between subunits of the complex for its stability.
Levels of γ-tubulin were reduced by ∼50%, whereas actin was
unaffected (Fig. S5 A and B). To determine whether the spindle
and centrosome defects resulting from Mgr depletion might re-
flect the reduction in tubulin levels, we performed partial de-
pletion of β- and γ-tubulin (Fig. 2 G–K and Fig. S5 C–J). DMEL-
2 cells were treated with varying amounts of β- or γ-tubulin
dsRNA and assayed for spindle defects and centrosome numbers
after 6 d. An increase in monopolar and disorganized spindles
and in centrosome loss mirrored the extent of β- and γ-tubulin
knockdown. However, only the β-tubulin knockdown recapitulated
the small spindle size observed after mgr RNAi (Fig. S5D).
Moreover, γ-tubulin knockdown leads to a population of bipolar
spindles with the centrosomes at one pole only (Fig. S5E), which
was not observed after mgr RNAi or partial depletion of β-tu-
bulin. Thus, the mitotic defects that follow loss of Mgr appear to
be largely a consequence of tubulin destabilization. To assess if
the structural defects observed on the centrioles after mgr RNAi
was a consequence of αβ- or γ-tubulin depletion, we carried out
electron microscopy in cells partially depleted for 6 d for β- or
γ-tubulin. These analyses failed to reveal any centriolar structural
defects in either case (Fig. S5 I and J). However, the difficulties in
assessing the level and timing of β- or γ-tubulin depletion that
would be equivalent to that seen following mgr RNAi, together
with the restricted numbers of centrioles that can be observed by
electron microscopy in such experiments, makes it difficult to
reach a firm conclusion about the effects on centrioles.

Levels of Free αβ-Tubulin Sensitize Mgr Activity. The above studies
showed that MTs of different tissues present different sensitivity
to reduced Mgr levels (Fig. 1). Moreover, even in mgr testes,
where disruption of the MT network is most pronounced, it only
occurs once primary spermatocytes have reached a late stage in
their development. This result is despite the fact that Mgr pro-
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Fig. 2. Mgr or partial β-tubulin depletion result in similar microtubule-
based abnormalities. DMEL-2 cells transfected with control (Ctrl) or mgr
dsRNA for 3-d intervals up to a maximum of 12 d (A–F). (A) Percentage of
prometaphase and metaphase cells with monopolar or disorganized spindles
scored following immunostaining, as in B. Error bars = SEMs for more than
three independent experiments; n > 150 metaphase cells. (B) Cells immu-
nostained to reveal microtubules (α-tubulin) 6 d after transfection. (Scale
bar, 10 μm.) (C) Percentage of cells without centrosomes scored after
immunostaining, as in D. Error bars = SEMs of more than five independent
experiments; n > 1,000 cells. (D) Cells immunostained to reveal centrosomes
(Dplp) 6 d after transfection. (Scale bar, 10 μm.) (E) Electron micrographs of
centrioles in control cells (Ctrl RNAi) and following 9–12 d of mgr RNAi.
Twenty-percent of the centrioles showed an abnormal structure after Mgr
depletion, whereas none were observed in the control depletion (n = 10).
(Scale bar, 0.1 μm.) (F) Western blot of β-tubulin, Mgr and H2A (loading
control, Ctrl) 6 d after transfection with mgr, pfdn4, or control dsRNAs. (G–
K) DMEL-2 cells treated with a range of concentrations (3, 10, and 25 ng/mL)
of β-tubulin dsRNA for 6 d. (G) Western blot of β-tubulin and H2A (loading
control, Ctrl) following such treatment. (H) Proportion of prometaphase
and metaphase cells with monopolar or disorganized spindles in relation
to β-tubulin dsRNA treatment. Error bars = SEMs of more than two in-
dependent experiments; n > 100 metaphase cells. (I) Cells labeled with an
anti-α-tubulin to reveal spindle microtubules in control and β-tubulin dsRNA

treated cells. (Scale bar 10 μm.) (J) Percentage of cells without centrosomes
in relation to β-tubulin dsRNA treament. Error bars = SEMs of more than two
independent experiments; n > 200 cells. (K) Cells labeled to reveal cen-
trosomes (Dplp) following control dsRNA and β-tubulin dsRNA treatment.
(Scale bar, 10 μm.)
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tein is present throughout the wild-type testes and so ought, in
principle, to be equally functional at all stages. This finding
suggests that the onset of synthesis of the β2-tubulin testes spe-
cific isoform in late spermatogenesis might bring a particular
requirement for Mgr (31, 32). If this were the case, we wondered
whether increased synthesis of β1-tubulin from a transgene might
trigger a stronger requirement for Mgr in larval neuroblasts (Fig.
3). We found that in mgrl4/mgr5 mutant neuroblasts the level of
endogenous β-tubulin was only slightly reduced (by 25% com-
pared with wild-type levels). The additional expression of β1-
tubulin–GFP did not drastically affect endogenous β-tubulin
levels if one wild-type copy of mgr was present (mgr5/+;β1-
tubulin–GFP, a reduction of 15% compared with wild-type).
However, in mgrl4/mgr5 mutants, expression of β1-tubulin–GFP
leads to a further decrease in levels of endogenous β-tubulin by
60% compared with wild-type levels (Fig. 3 A and B). There was
also a dramatic loss ofMT staining in immunostained preparations
of the larval CNS of such organisms (Fig. 3C). Taken together,
these results suggest that if tubulin levels exceed a certain thresh-
old, this overproduced tubulin may change the complex balance of
folding, causing a synthetically lethal phenotype with mgr.
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Fig. 4. Mgr and Vhl cooperate in regulating tubulin destruction. (A) MBP,
MBP-Mgr, and MBP-Vhl, affinity purified from Escherichia coli extracts
(Coomassie stain) tested for binding 35S-Methionine labeled Mgr and Vhl
synthesized by coupled transcription-translation in vitro (Autoradiography).
(B) MBP and MBP-Mgr, affinity-purified from E. coli extracts (Coomassie
stain) tested for binding purified αβ-tubulin (Western blot). (C) MBP and
MBP-Vhl, affinity-purified from E. coli extracts (Coomassie stain, Right)
tested for binding-purified αβ-tubulin (Coomassie stain, Left). (D) MBP-Vhl,
affinity purified from E. coli extracts, and tested for binding 35S-Mgr (as in
A). Excess of purified αβ-tubulin is insufficient to release the Vhl:Mgr inter-
action. (E–J) DMEL-2 cells treated with Control, mgr, Vhl, or mgr and Vhl
dsRNA for 6 or 9 d. (E) Levels of β-tubulin in three independent experiments
9 d after transfection. (F) Western blot of β-tubulin and Mgr after such
treatment. H2A is used as loading control (Ctrl). (G) Percentage of prom-
etaphase and metaphase cells with monopolar or disorganized spindles
after indicated dsRNA treatment. Error bars = SEMs of three independent
experiments. n > 300 metaphase cells; (H) Mitotic cells immunostained to
reveal microtubules (α-tubulin). (Scale bar, 10 μm.) (I) Percentage of cells
without centrosome 9 d after indicated transfections. Error bars = SEM
of three independent experiments. n > 600 cells. (J) Cells immunostained
to reveal centrosomes (Dplp). (Scale bar, 10 μm.) All P values are from Stu-
dent t tests.
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Mgr and Vhl Cooperate to Control the Degradation of αβ-Tubulins.
Mgr’s human counterpart, which shares 57% amino acid identity,
can interact with human Vhl, an E3 ubiquitin-protein ligase also
able to bind the MT lattice (17). Several lines of evidence in-
dicated that Mgr was able to interact with Drosophila Vhl and
that both proteins could interact with tubulin monomers and
dimers. First, beads carrying Maltose binding protein (MBP)-Mgr
or MBP-Vhl fusion proteins synthesized in bacteria could bind
35S-labeled Mgr or Vhl synthesized by coupled transcription-
translation in vitro (Fig. 4A). This experiment also indicated that
both proteins could undertake self-self interactions. Second,
both Mgr and Vhl synthesized in bacteria were able to bind
35S-labeled β1-tubulin synthesized by coupled transcription-
translation in vitro (Fig. S6 A and B). Conversely β1-tubulin
synthesized in bacteria would interact with 35S-labeled Vhl or
Mgr (Fig. S6 C and D). Third, MBP-tagged Mgr or MBP-tagged
Vhl immobilized on beads directly bound αβ-tubulin dimers (Fig.
4 B and C). Fourth, we were unable to disrupt a complex formed
between bacterially expressed MBP-Vhl and 35S-labeled Mgr by
adding dimeric αβ-tubulin (Fig. 4D). Instead the Vhl:Mgr com-
plex also bound αβ-tubulin dimer. However, whereas Drosophila
Vhl, like mammalian Vhl, could interact with MTs (Fig. S6 E and
F), Mgr could not. This finding suggests that Mgr can interact
with free, but not with polymerized, tubulin.
To test whether the interaction between Vhl and Mgr played

any part in the control of tubulin degradation, we asked what the
consequences would be if Mgr and Vhl were to be codepleted.
Vhl RNAi alone had little effect on the levels of β-tubulin in
cultured cells (Fig. 4 E and F), confirming the recent finding of
Duchi and colleagues (19). Moreover, Vhl depletion resulted in
only a slight increase in the proportion of mitotic cells with
monopolar or disorganized spindles or lacking centrosomes (Fig.
4 G–J). In contrast, Mgr depletion resulted in a clear decrease in
β-tubulin levels, formation of monopolar/disorganized spindles
in the majority of mitotic cells, and an increase of the number of
cells without centrosomes. We found all three of these pheno-
types were significantly rescued by the codepletion of Vhl (Fig. 4
E and J). Thus, the proteolytic destruction of tubulin, which takes
place when tubulin cannot be correctly folded by the Prefoldin
chaperone, requires the function of the Vhl protein.

Discussion
The finding that the Drosophila merry-go-round gene encodes
a subunit of the Prefoldin complex has allowed us to account for
aberrant structure and function of spindles and centrosomes in
cells depleted of its gene product. The inability to correctly fold
tubulins in Prefoldin-deficient cells leads to tubulin instability
and, hence, defects that can be phenocopied by depleting β- or
γ-tubulin. However, whereas β-tubulin depletion phenocopied all
of the defects observed, γ-tubulin depletion only recapitulated
some of them. The more dramatic phenotypes seen in Mgr-de-
ficient cells expressing high levels of tubulin (primary spermato-
cytes and neuroblasts expressing a β-tubulin transgene) suggest
that the Prefoldin complex is critical to maintain tubulin levels
above a certain threshold of tubulin expression. This finding could
be a consequence of the impact of an excess of tubulin upon its
complex folding pathway. Interestingly, in mammalian cells, in-
creased soluble tubulin, in response to a MT-destabilizing agent,
leads to the rapid degradation of tubulin (33, 34). In Drosophila,
tubulins in the testes are the most affected by the absence of
Mgr compared with other tissues. Indeed, it may be of particular
importance to regulate tubulin levels at the late stages of

spermatogenesis, where the very large meiotic cells are provided
with proportionally large amounts of tubulin that are used in the
meiotic spindle but have a major additional purpose: the building
of the sperm tail. Similarly, in the mouse, the effects of depletion
or mutation of prefoldin subunits are largely restricted to the
brain, where tubulin levels are also very high (26, 27). Whether
this tissue specificity is a consequence of tubulin levels will be an
interesting question to address. Finally, our demonstration that
Vhl is required for tubulin destruction in the absence of Mgr and
the ability of Vhl to interact with tubulin monomers and dimers
raises the possibility that its role as an E3 ubiquitin-protein ligase
could come to play in regulating tubulin levels.
The idea that Vhl and Prefoldin can cooperate in regulating

protein stability was also raised by Mousnier et al. (35), who
identified the prefoldin subunit VBP1 as a binding partner of the
HIV-1 viral integrase and suggested this mediated the interaction
of the integrase with the Cul2-Vhl E3-Ubiquitin ligase. This
finding led these authors to suggest a role for prefoldin at a pivotal
part of the pathway that would determine whether a protein was
passed on to the CCT chaperonin for folding or to the protea-
some for degradation (35). Similarly, we can speculate that pre-
foldin as a partner of Vhl may well serve a key role in regulating
the equilibrium between tubulin targeted for destruction or for
folding and incorporation into MTs. The concentration of as-
sembly-competent tubulin must be tightly controlled because it
affects cytoskeletal dynamics. Vhl might contribute to this in-
fluence by an effect on MT dynamics through interaction with
MAPs on the MT lattice (17, 18) and by intervening in the reg-
ulation of tubulin folding. There is growing evidence for a critical
function of Vhl in stabilizing cytoplasmic MTs (16, 17) and axo-
nemal MTs in response to levels of soluble tubulin (36). Re-
ciprocally, MT stability can contribute to regulating levels of
proteins that are targets of the Cul2-Vhl E3-Ubiquitin ligase, such
as the HIF proteins, the levels of which fall when their mRNAs
accumulate in cytoplasmic P-bodies for translational repression
following MT disruption (37). It will be important in future to
consider the roles played by the Prefoldin complex and Vhl to
understand the interrelationships between the machinery regu-
lating tubulin levels in relation toMT stability, both in normal and
tumor cells.

Materials and Methods
Briefly, testes from pupae and CNS from third-instar larvae were dissected in
PBS andfixedwithmethanol before proceeding to immunostaining. Cultured
cells were pre-extracted before fixation with paraformaldehyde and
immunostaining. Depletion of proteins in cultured cells was performed by
transfection of dsRNA with transfast reagent. Protein extracts were obtained
after homogeneization of cells, CNS or testes in lysis buffer. Protein inter-
actions were tested in vitro using either recombinant commercially available
tubulins (Cytoskeleton), proteins produced in bacteria, or proteins translated
in reticulocyte lysate.

A more detailed description of gene constructs, cell culture, immunocy-
tochemistry, dsRNA, microscopy, protein purification, Western blot analysis,
in vitro binding assays, fly genetics, and primers list can be found in the SI
Materials and Methods and Table S1.
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