458 research outputs found

    Risk Factors for Hospital Malpractice Exposure: Implications for Managers and Insurers

    Get PDF
    The possibility of identifying certain variables that might serve as predictors of above- or below-average medical malpractice claims experience was explored. Results showed that it is possible to identify significant risk factors

    Generalizing the autonomous Kepler Ermakov system in a Riemannian space

    Full text link
    We generalize the two dimensional autonomous Hamiltonian Kepler Ermakov dynamical system to three dimensions using the sl(2,R) invariance of Noether symmetries and determine all three dimensional autonomous Hamiltonian Kepler Ermakov dynamical systems which are Liouville integrable via Noether symmetries. Subsequently we generalize the autonomous Kepler Ermakov system in a Riemannian space which admits a gradient homothetic vector by the requirements (a) that it admits a first integral (the Riemannian Ermakov invariant) and (b) it has sl(2,R) invariance. We consider both the non-Hamiltonian and the Hamiltonian systems. In each case we compute the Riemannian Ermakov invariant and the equations defining the dynamical system. We apply the results in General Relativity and determine the autonomous Hamiltonian Riemannian Kepler Ermakov system in the spatially flat Friedman Robertson Walker spacetime. We consider a locally rotational symmetric (LRS) spacetime of class A and discuss two cosmological models. The first cosmological model consists of a scalar field with exponential potential and a perfect fluid with a stiff equation of state. The second cosmological model is the f(R) modified gravity model of {\Lambda}_{bc}CDM. It is shown that in both applications the gravitational field equations reduce to those of the generalized autonomous Riemannian Kepler Ermakov dynamical system which is Liouville integrable via Noether integrals.Comment: Reference [25] update, 21 page

    Nonstationary excitations in Bose-Einstein condensates under the action of periodically varying scattering length with time dependent frequencies

    Full text link
    We investigate nonstationary excitations in 3D-Bose-Einstein condensates in a spherically symmetric trap potential under the modulation of scattering length with slowly varying frequencies (adiabatic modulation). By numerically solving the Gross-Pitaevskii equation we observe a step-wise increase in the amplitude of oscillation due to successive phase locking between driving frequency and nonlinear frequency. Such a nonstationary excitation has been shown to exist by an analytic approach using variational procedure and perturbation theory in the action-angle variables. By using a canonical perturbation theory, we have identified the successive resonance excitations whenever the driven frequency matches the nonlinear frequency or its subharmonics.Comment: 17 pages, 6 figures (to be published in Physica D

    Symmetry, singularities and integrability in complex dynamics III: approximate symmetries and invariants

    Full text link
    The different natures of approximate symmetries and their corresponding first integrals/invariants are delineated in the contexts of both Lie symmetries of ordinary differential equations and Noether symmetries of the Action Integral. Particular note is taken of the effect of taking higher orders of the perturbation parameter. Approximate symmetries of approximate first integrals/invariants and the problems of calculating them using the Lie method are considered

    2H and 27Al Solid-State NMR Study of the Local Environments in Al-Doped 2-Line Ferrihydrite, Goethite, and Lepidocrocite.

    Get PDF
    Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in order to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin-echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. Predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases.J.K., A.J.I., D.M. and N.P. were supported by an NSF grant collaborative research grant in chemistry CHE0714183. An allocation of time upon the NANO computer cluster at the Center for Functional Nanomaterials, Brookhaven National Laboratory, U.S.A., which is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 is also acknowledged. D.S.M. and C.P.G. thank the EPSRC and the EU-ERC for support.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.chemmater.5b0085

    Lie symmetries for two-dimensional charged particle motion

    Full text link
    We find the Lie point symmetries for non-relativistic two-dimensional charged particle motion. These symmetries comprise a quasi-invariance transformation, a time-dependent rotation, a time-dependent spatial translation and a dilation. The associated electromagnetic fields satisfy a system of first-order linear partial differential equations. This system is solved exactly, yielding four classes of electromagnetic fields compatible with Lie point symmetries

    Frequencies and Damping rates of a 2D Deformed Trapped Bose gas above the Critical Temperature

    Full text link
    We derive the equation of motion for the velocity fluctuations of a 2D deformed trapped Bose gas above the critical temperature in the hydrodynamical regime. From this equation, we calculate the eigenfrequencies for a few low-lying excitation modes. Using the method of averages, we derive a dispersion relation in a deformed trap that interpolates between the collisionless and hydrodynamic regimes. We make use of this dispersion relation to calculate the frequencies and the damping rates for monopole and quadrupole mode in both the regimes. We also discuss the time evolution of the wave packet width of a Bose gas in a time dependent as well as time independent trap.Comment: 13 pages, latex fil

    Backlund transformations for many-body systems related to KdV

    Get PDF
    We present Backlund transformations (BTs) with parameter for certain classical integrable n-body systems, namely the many-body generalised Henon-Heiles, Garnier and Neumann systems. Our construction makes use of the fact that all these systems may be obtained as particular reductions (stationary or restricted flows) of the KdV hierarchy; alternatively they may be considered as examples of the reduced sl(2) Gaudin magnet. The BTs provide exact time-discretizations of the original (continuous) systems, preserving the Lax matrix and hence all integrals of motion, and satisfy the spectrality property with respect to the Backlund parameter.Comment: LaTeX2e, 8 page

    Cosmic Dynamics of Bose-Einstein Condensates

    Full text link
    A dynamical correspondence is established between positively curved, isotropic, perfect fluid cosmologies and quasi-two-dimensional, harmonically trapped Bose-Einstein condensates by mapping the equations of motion for both systems onto the one-dimensional Ermakov system. Parameters that characterize the physical properties of the condensate wavepacket, such as its width, momentum and energy, may be identified with the scale factor, Hubble expansion parameter and energy density of the universe, respectively. Different forms of cosmic matter correspond to different choices for the time-dependent trapping frequency of the condensate. The trapping frequency that mimics a radiation-dominated universe is determined.Comment: 12 pages, no figures. Extended discussion. In Press, Classical and Quantum Gravit
    corecore