29 research outputs found

    Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi

    Get PDF
    Hypericum perforatum L. (St. John’s-wort, Hypericaceae) is a valuable medicinal plant species cultivated for pharmaceutical purposes. Although the chemical composition and pharmacological activities of H. perforatum have been well studied, no data are available concerning the influence of arbuscular mycorrhizal fungi (AMF) on this important herb. A laboratory experiment was therefore conducted in order to test three AMF inocula on H. perforatum with a view to show whether AMF could influence plant vitality (biomass and photosynthetic activity) and the production of the most valuable secondary metabolites, namely anthraquinone derivatives (hypericin and pseudohypericin) as well as the prenylated phloroglucinol—hyperforin. The following treatments were prepared: (1) control—sterile soil without AMF inoculation, (2) Rhizophagus intraradices (syn. Glomus intraradices), (3) Funneliformis mosseae (syn. Glomus mosseae), and (4) an AMF Mix which contained: Funneliformis constrictum (syn. Glomus constrictum), Funneliformis geosporum (syn. Glomus geosporum), F. mosseae, and R. intraradices. The application of R. intraradices inoculum resulted in the highest mycorrhizal colonization, whereas the lowest values of mycorrhizal parameters were detected in the AMF Mix. There were no statistically significant differences in H. perforatum shoot mass in any of the treatments. However, we found AMF species specificity in the stimulation of H. perforatum photosynthetic activity and the production of secondary metabolites. Inoculation with the AMF Mix resulted in higher photosynthetic performance index (PItotal) values in comparison to all the other treatments. The plants inoculated with R. intraradices and the AMF Mix were characterized by a higher concentration of hypericin and pseudohypericin in the shoots. However, no differences in the content of these metabolites were detected after the application of F. mosseae. In the case of hyperforin, no significant differences were found between the control plants and those inoculated with any of the AMF applied. The enhanced content of anthraquinone derivatives and, at the same time, better plant vitality suggest that the improved production of these metabolites was a result of the positive effect of the applied AMF strains on H. perforatum. This could be due to improved mineral nutrition or to AMF-induced changes in the phytohormonal balance. Our results are promising from the biotechnological point of view, i.e. the future inoculation of H. perforatum with AMF in order to improve the quality of medicinal plant raw material obtained from cultivation

    Monthly variation in the probability of presence of adult Culicoides populations in nine European countries and the implications for targeted surveillance

    Get PDF
    Background: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are small hematophagous insects responsible for the transmission of bluetongue virus, Schmallenberg virus and African horse sickness virus to wild and domestic ruminants and equids. Outbreaks of these viruses have caused economic damage within the European Union. The spatio-temporal distribution of biting midges is a key factor in identifying areas with the potential for disease spread. The aim of this study was to identify and map areas of neglectable adult activity for each month in an average year. Average monthly risk maps can be used as a tool when allocating resources for surveillance and control programs within Europe. Methods : We modelled the occurrence of C. imicola and the Obsoletus and Pulicaris ensembles using existing entomological surveillance data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. The monthly probability of each vector species and ensembles being present in Europe based on climatic and environmental input variables was estimated with the machine learning technique Random Forest. Subsequently, the monthly probability was classified into three classes: Absence, Presence and Uncertain status. These three classes are useful for mapping areas of no risk, areas of high-risk targeted for animal movement restrictions, and areas with an uncertain status that need active entomological surveillance to determine whether or not vectors are present. Results: The distribution of Culicoides species ensembles were in agreement with their previously reported distribution in Europe. The Random Forest models were very accurate in predicting the probability of presence for C. imicola (mean AUC = 0.95), less accurate for the Obsoletus ensemble (mean AUC = 0.84), while the lowest accuracy was found for the Pulicaris ensemble (mean AUC = 0.71). The most important environmental variables in the models were related to temperature and precipitation for all three groups. Conclusions: The duration periods with low or null adult activity can be derived from the associated monthly distribution maps, and it was also possible to identify and map areas with uncertain predictions. In the absence of ongoing vector surveillance, these maps can be used by veterinary authorities to classify areas as likely vector-free or as likely risk areas from southern Spain to northern Sweden with acceptable precision. The maps can also focus costly entomological surveillance to seasons and areas where the predictions and vector-free status remain uncertain

    Global knowledge gaps in the prevention and control of bovine viral diarrhoea (BVD) virus

    No full text
    The significant economic impacts of bovine viral diarrhoea (BVD) virus have prompted many countries worldwide to embark on regional or national BVD eradication programmes. Unlike other infectious diseases, BVD control is highly feasible in cattle production systems because the pathogenesis is well understood and there are effective tools to break the disease transmission cycle at the farm and industry levels. Coordinated control approaches typically involve directly testing populations for virus or serological screening of cattle herds to identify those with recent exposure to BVD, testing individual animals within affected herds to identify and eliminate persistently infected (PI) cattle, and implementing biosecurity measures such as double-fencing shared farm boundaries, vaccinating susceptible breeding cattle, improving visitor and equipment hygiene practices, and maintaining closed herds to prevent further disease transmission. As highlighted by the recent DISCONTOOLS review conducted by a panel of internationally recognized experts, knowledge gaps in the control measures are primarily centred around the practical application of existing tools rather than the need for creation of new tools. Further research is required to: (a) determine the most cost effective and socially acceptable means of applying BVD control measures in different cattle production systems; (b) identify the most effective ways to build widespread support for implementing BVD control measures from the bottom-up through farmer engagement and from the top-down through national policy; and (c) to develop strategies to prevent the reintroduction of BVD into disease-free regions by managing the risks associated with the movements of animals, personnel and equipment. Stronger collaboration between epidemiologists, economists and social scientists will be essential for progressing efforts to eradicate BVD from more countries worldwide

    A density map of the tick-borne encephalitis and lyme borreliosis vector ixodes ricinus (acari: ixodidae) for Germany

    Full text link
    The castor bean tick Ixodes ricinus (L.) is the principal vector for a variety of viral, bacterial, and protozoan pathogens causing a growing public-health issue over the past decades. However, a national density map of I. ricinus is still missing. Here, I. ricinus nymphs in Germany were investigated by compiling a high-resolution map depicting the mean annually accumulated nymphal density, as observed by monthly flagging an area of 100 m(2) Input data comprise ticks collected at 69 sampling sites. The model domain covers an area of about 357,000 km(2) (regional scale). Two negative binomial regression models were fitted to the data to interpolate the tick densities to unsampled locations using bioclimatic variables and land cover, which were selected according to their significance by the Akaike information criterion (AIC). The default model was fitted to the complete dataset resulting in AIC = 842. An optimized model resulted in a significantly better value of AIC = 732. Tick densities are very low in urban (green) areas. Maximum annual densities up to 1,000 nymphs per 100 m(2) are observed in broad-leaved forests. The tick maps were verified by leave-one-out cross-validation. Root mean square errors of RMSE = 137 and RMSE = 126 nymphs per 100 m(2) were estimated for the two models, respectively. These errors are of the order of the interannual variation of the tick densities. The compilation of a high-resolution density map of unfed nymphal I. ricinus for Germany provides a novel, nationwide insight into the distribution of an important disease vector
    corecore