5 research outputs found

    Automated segmentation of tissue images for computerized IHC analysis

    Get PDF
    This paper presents two automated methods for the segmentation ofimmunohistochemical tissue images that overcome the limitations of themanual approach aswell as of the existing computerized techniques. The first independent method, based on unsupervised color clustering, recognizes automatically the target cancerous areas in the specimen and disregards the stroma; the second method, based on colors separation and morphological processing, exploits automated segmentation of the nuclear membranes of the cancerous cells. Extensive experimental results on real tissue images demonstrate the accuracy of our techniques compared to manual segmentations; additional experiments show that our techniques are more effective in immunohistochemical images than popular approaches based on supervised learning or active contours. The proposed procedure can be exploited for any applications that require tissues and cells exploration and to perform reliable and standardized measures of the activity of specific proteins involved in multi-factorial genetic pathologie

    A novel toolbox to investigate tissue spatial organization applied to the study of the islets of Langerhans

    No full text
    Thanks to the development of new 3D Imaging techniques, volumetric data of thick samples, especially tissues, are commonly available. Several algorithms were proposed to analyze cells or nuclei in tissues, however these tools are limited to two dimensions. Within any given tissue, cells are not likely to be organized randomly and as such have specific patterns of cell-cell interaction forming complex communication networks. In this paper, we propose a new set of tools as an approach to segment and analyze tissues in 3D with single cell resolution. This new tool box can identify and compute the geographical location of single cells and analyze the potential physical interactions between different cell types and in 3D. As a proof-of-principle, we applied our methodology to investigation of the cyto-architecture of the islets of Langerhans in mice and monkeys. The results obtained here are a significant improvement in current methodologies and provides new insight into the organization of alpha cells and their cellular interactions within the islet’s cellular framework
    corecore