122 research outputs found

    The Role of Adult Fiddler Crab Environmental Acoustic Cues and Chemical Cues in Stimulating Molting of Field-Caught Megalopae

    Get PDF
    In mid-Atlantic estuaries, three fiddler crab species, Uca pugilator, Uca pugnax and Uca minax co-occur, with their adults occupying different habitat types distinguished by salinity and sediment size. Some evidence exists that selective settlement is responsible for this separation but the mechanism is largely unknown. We tested the hypothesis that field-caught megalopae would accelerate metamorphosis in the presence of adult species-specific environmental acoustic cues and conspecific chemical cues. We placed megalopae in seawater with and without adult chemical cues, exposed them to one of three sound treatments for 8 days, and recorded the time each megalopa took to metamorphose. In the absence of adult chemical cues, very few megalopae molted regardless of sound treatment. Molting in the presence of habitat sound and chemical cues varied by species. Many U. pugilator molted in all sound and odor combinations, including no odor/sound. U. pugnax was stimulated to molt by chemical cues from either U. pugilator or U. pugnax, but molting was similar across sound treatments. Our results do not support the hypothesis that sound stimulates molting by fiddler crab megalopae, but support the role of chemical odors from adults as molting cues

    Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06-05 (NOAA ship "Nancy Foster", April 18-30, 2006)

    Get PDF
    Navassa is a small, undeveloped island in the Windward Passage between Jamaica and Haiti. It was designated a National Wildlife Refuge under the jurisdiction of the U.S. Fish and Wildlife Service in 1999, but the remote location makes management and enforcement challenging, and the area is regularly fished by artisanal fishermen from Haiti. In April 2006, the NOAA Center for Coastal Fisheries and Habitat Research conducted a research cruise to Navassa. The cruise produced the first high-resolution multibeam bathymetry for the area, which will facilitate habitat mapping and assist in refuge management. A major emphasis of the cruise was to study the impact of Haitian fishing gear on benthic habitats and fish communities; however, in 10 days on station only one small boat was observed with five fishermen and seven traps. Fifteen monitoring stations were established to characterize fish and benthic communities along the deep (28-34 m) shelf, as these areas have been largely unstudied by previous cruises. The fish communities included numerous squirrelfishes, triggerfishes, and parrotfishes. Snappers and grouper were also present but no small individuals were observed. Similarly, conch surveys indicated the population was in low abundance and was heavily skewed towards adults. Analysis of the benthic photoquadrats is currently underway. Other cruise activities included installation of a temperature logger network, sample collection for stable isotope analyses to examine trophic structure, and drop camera surveys to ground-truth habitat maps and overhead imagery. (PDF contains 58 pages

    Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials

    Full text link
    Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2–39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment

    Seismic surveys and marine turtles: An underestimated global threat?

    Get PDF
    Seismic surveys are widely used in marine geophysical oil and gas exploration, employing airguns to produce sound-waves capable of penetrating the sea floor. In recent years, concerns have been raised over the biological impacts of this activity, particularly for marine mammals. While exploration occurs in the waters of at least fifty countries where marine turtles are present, the degree of threat posed by seismic surveys is almost entirely unknown. To investigate this issue, a mixed-methods approach involving a systematic review, policy comparison and stakeholder analysis was employed and recommendations for future research were identified. This study found that turtles have been largely neglected both in terms of research and their inclusion in mitigation policies. Few studies have investigated the potential for seismic surveys to cause behavioural changes or physical damage, indicating a crucial knowledge gap. Possible ramifications for turtles include exclusion from critical habitats, damage to hearing and entanglement in seismic survey equipment. Despite this, the policy comparison revealed that only three countries worldwide currently include turtles in their seismic mitigation guidelines and very few of the measures they specify are based on scientific evidence or proven effectiveness. Opinions obtained from stakeholder groups further highlight the urgent need for directed, in-depth empirical research to better inform and develop appropriate mitigation strategies. As seismic surveying is becoming increasingly widespread and frequent, it is important and timely that we evaluate the extent to which marine turtles, a taxon of global conservation concern, may be affected.This work was supported by NERC (QBEX code NE/J012319/1) and the Darwin Initiative (DI 20-009)

    Novel Bio-Logging Tool for Studying Fine-Scale Behaviors of Marine Turtles in Response to Sound

    Full text link
    Increases in the spatial scale and intensity of activities that produce marine anthropogenic sound highlight the importance of understanding the impacts and effects of sound on threatened species such as marine turtles. Marine turtles detect and behaviorally respond to low-frequency sounds, however few studies have directly examined their behavioral responses to specific types or intensities of anthropogenic or natural sounds. Recent advances in the development of bio-logging tools, which combine acoustic and fine-scale movement measurements, have allowed for evaluations of animal responses to sound. Here, we describe these tools and present a case study demonstrating the potential application of a newly developed technology (ROTAG, Loggerhead Instruments, Inc.) to examine behavioral responses of freely swimming marine turtles to sound. The ROTAG incorporates a three-axis accelerometer, gyroscope, and magnetometer to record the turtle\u27s pitch, roll, and heading; a pressure sensor to record turtle depth; a hydrophone to record the turtle\u27s received underwater acoustic sound field; a temperature gauge; and two VHF radio telemetry transmitters and antennas for tag and turtle tracking. Tags can be programmed to automatically release via a timed corrodible link several hours or days after deployment. We describe an example of the data collected with these tags and present a case study of a successful ROTAG deployment on a juvenile green turtle (Chelonia mydas) in the Paranaguá Estuary Complex, Brazil. The tag was deployed for 221 min, during which several vessels passed closely (\u3c2 km) by the turtle. The concurrent movement and acoustic data collected by the ROTAG were examined during these times to determine if the turtle responded to these anthropogenic sound sources. While fine-scale behavioral responses were not apparent (second-by-second), the turtle did appear to perform dives during which it remained still on or near the sea floor during several of the vessel passes. This case study provides proof of concept that ROTAGs can successfully be applied to free-ranging marine turtles to examine their behavioral response to sound. Finally, we discuss the broad applications that these tools have to study the fine-scale behaviors of marine turtles and highlight their use to aid in marine turtle conservation and management

    Recruitment Facilitation and Spatial Pattern Formation in Soft-Bottom Mussel Beds

    Full text link
    Mussels (Mytilus edulis) build massive, spatially complex, biogenic structures that alter the biotic and abiotic environment and provide a variety of ecosystem services. Unlike rocky shores, where mussels can attach to the primary substrate, soft sediments are unsuitable for mussel attachment. We used a simple lattice model, field sampling, and field and laboratory experiments to examine facilitation of recruitment (i.e., preferential larval, juvenile, and adult attachment to mussel biogenic structure) and its role in the development of power-law spatial patterns observed in Maine, USA, soft-bottom mussel beds. The model demonstrated that recruitment facilitation produces power-law spatial structure similar to that in natural beds. Field results provided strong evidence for facilitation of recruitment to other mussels—they do not simply map onto a hard-substrate template of gravel and shell hash. Mussels were spatially decoupled from non-mussel hard substrates to which they can potentially recruit. Recent larval recruits were positively correlated with adult mussels, but not with other hard substrates. Mussels made byssal thread attachments to other mussels in much higher proportions than to other hard substrates. In a field experiment, mussel recruitment was highest to live mussels, followed by mussel shell hash and gravel, with almost no recruitment to muddy sand. In a laboratory experiment, evenly dispersed mussels rapidly self-organized into power-law clusters similar to those observed in nature. Collectively, the results indicate that facilitation of recruitment to existing mussels plays a major role in soft-bottom spatial pattern development. The interaction between large-scale resource availability (hard substrate) and local-scale recruitment facilitation may be responsible for creating complex power-law spatial structure in soft-bottom mussel beds
    corecore