310 research outputs found

    Coulomb-Blockade directional coupler

    Get PDF
    A tunable directional coupler based on Coulomb Blockade effect is presented. Two electron waveguides are coupled by a quantum dot to an injector waveguide. Electron confinement is obtained by surface Schottky gates on single GaAs/AlGaAs heterojunction. Magneto-electrical measurements down to 350 mK are presented and large transconductance oscillations are reported on both outputs up to 4.2 K. Experimental results are interpreted in terms of Coulomb Blockade effect and the relevance of the present design strategy for the implementation of an electronic multiplexer is underlined.Comment: 4 pages, 4 figures, to be published in Applied Physics Letter

    Coherent transport in Nb/delta-doped-GaAs hybrid microstructures

    Full text link
    Coherent transport in Nb/GaAs superconductor-semiconductor microstructures is presented. The structures fabrication procedure is based on delta-doped layers grown by molecular-beam-epitaxy near the GaAs surface, followed by an As cap layer to protect the active semiconductor layers during ex situ transfer. The superconductor is then sputter deposited in situ after thermal desorption of the protective layer. Two types of structures in particular will be discussed, i.e., a reference junction and the engineered one that contains an additional insulating AlGaAs barrier inserted during the growth in the semiconductor. This latter configuration may give rise to controlled interference effects and realizes the model introduced by de Gennes and Saint-James in 1963. While both structures show reflectionless tunneling-dominated transport, only the engineered junction shows additionally a low-temperature single marked resonance peaks superimposed to the characteristic Andreev-dominated subgap conductance. The analysis of coherent magnetotransport in both microstructures is successfully performed within the random matrix theory of Andreev transport and ballistic effects are included by directly solving the Bogoliubov-de Gennes equations. The impact of junction morphology on reflectionless tunneling and the application of the employed fabrication technique to the realization of complex semiconductor-superconductor systems are furthermore discussed.Comment: 9 pages, 8 figures, invited review paper, to be published in Mod. Phys. Lett.

    Demonstration of an electrostatic-shielded cantilever

    Full text link
    The fabrication and performances of cantilevered probes with reduced parasitic capacitance starting from a commercial Si3N4 cantilever chip is presented. Nanomachining and metal deposition induced by focused ion beam techniques were employed in order to modify the original insulating pyramidal tip and insert a conducting metallic tip. Two parallel metallic electrodes deposited on the original cantilever arms are employed for tip biasing and as ground plane in order to minimize the electrostatic force due to the capacitive interaction between cantilever and sample surface. Excitation spectra and force-to-distance characterization are shown with different electrode configurations. Applications of this scheme in electrostatic force microscopy, Kelvin probe microscopy and local anodic oxidation is discussed.Comment: 4 pages and 3 figures. Submitted to Applied Physics Letter

    Evidence of diffusive fractal aggregation of TiO2 nanoparticles by femtosecond laser ablation at ambient conditions

    Full text link
    The specific mechanisms which leads to the formation of fractal nanostructures by pulsed laser deposition remain elusive despite intense research efforts, motivated mainly by the technological interest in obtaining tailored nanostructures with simple and scalable production methods. Here we focus on fractal nanostructures of titanium dioxide, TiO2TiO_2, a strategic material for many applications, obtained by femtosecond laser ablation at ambient conditions. We model the fractal formation through extensive Monte Carlo simulations based on a set of minimal assumptions: irreversible sticking and size independent diffusion. Our model is able to reproduce the fractal dimensions and the area distributions of the nanostructures obtained in the experiments for different densities of the ablated material. The comparison of theory and experiment show that such fractal aggregates are formed after landing of the ablated material on the substrate surface by a diffusive mechanism. Finally we discuss the role of the thermal conductivity of the substrate and the laser fluence on the properties of the fractal nanostructures. Our results represent an advancement towards controlling the production of fractal nanostructures by pulsed laser deposition.Comment: 21 page

    Resonant Transport in Nb/GaAs/AlGaAs/GaAs Microstructures

    Get PDF
    Resonant transport in a hybrid semiconductor-superconductor microstructure grown by MBE on GaAs is presented. This structure experimentally realizes the prototype system originally proposed by de Gennes and Saint-James in 1963 in \emph{all}-metal structures. A low temperature single peak superimposed to the characteristic Andreev-dominated subgap conductance represents the mark of such resonant behavior. Random matrix theory of quantum transport was employed in order to analyze the observed magnetotransport properties and ballistic effects were included by directly solving the Bogoliubov-de Gennes equations.Comment: 7 pages REVTeX, 4 figures, to be published by World Scientific in Proceedings of International Symposium on Mesoscopic Superconductivity and Spintronics (NTT R&D Center Atsugi, Japan, March 2002

    Self-assembly and electron-beam-induced direct etching of suspended graphene nanostructures

    Full text link
    We report on suspended single-layer graphene deposition by a transfer-printing approach based on polydimethylsiloxane stamps. The transfer printing method allows the exfoliation of graphite flakes from a bulk graphite sample and their residue-free deposition on a silicon dioxide substrate. This deposition system creates a blistered graphene surface due to strain induced by the transfer process itself. Single-layer-graphene deposition and its "blistering" on the substrate are demonstrated by a combination of Raman spectroscopy, scanning electron microscopy and atomic-force microscopy measurements. Finally, we demonstrate that blister-like suspended graphene are self-supporting single-layer structures and can be flattened by employing a spatially-resolved direct-lithography technique based on electron-beam induced etching.Comment: 17 pages, 5 figure

    Stretching graphene using polymeric micro-muscles

    Full text link
    The control of strain in two-dimensional materials opens exciting perspectives for the engineering of their electronic properties. While this expectation has been validated by artificial-lattice studies, it remains elusive in the case of atomic lattices. Remarkable results were obtained on nanobubbles and nano-wrinkles, or using scanning probes; microscale strain devices were implemented exploiting deformable substrates or external loads. These devices lack, however, the flexibility required to fully control and investigate arbitrary strain profiles. Here, we demonstrate a novel approach making it possible to induce strain in graphene using polymeric micrometric artificial muscles (MAMs) that contract in a controllable and reversible way under an electronic stimulus. Our method exploits the mechanical response of poly-methyl-methacrylate (PMMA) to electron-beam irradiation. Inhomogeneous anisotropic strain and out-of-plane deformation are demonstrated and studied by Raman, scanning-electron and atomic-force microscopy. These can all be easily combined with the present device architecture. The flexibility of the present method opens new opportunities for the investigation of strain and nanomechanics in two-dimensional materials

    Reflectionless tunneling in planar Nb/GaAs hybrid junctions

    Full text link
    Reflectionless-tunneling was observed in Nb/GaAs superconductor/semiconductor junctions fabricated through a two-step procedure. First, periodic δ\delta-doped layers were grown by molecular beam epitaxy near the GaAs surface, followed by an As cap layer to protect the surface during {\it ex-situ} transfer. Second, Nb was deposited by dc-magnetron sputtering onto the GaAs(001) 2 ×\times 4 surface {\it in-situ} after thermal desorption of the cap layer. The magnetotransport behavior of the resulting hybrid junctions was successfully analyzed within the random matrix theory of phase-coherent Andreev transport. The impact of junction morphology on reflectionless tunneling and the applicability of the fabrication technique to the realization of complex superconductor/semiconductor mesoscopic systems are discussed.Comment: 10 pages, 3 figures, to be published in Appl. Phys. Let
    • …
    corecore