10 research outputs found

    The first pre- and post-wildfire charcoal quantification using peroxide-acid digestion

    Get PDF
    In the summer of 2002, the 200,000-ha Biscuit Wildfire consumed a portion of the 150-ha Long-Term Ecosystem Productivity (LTEP) experiment in the Siskiyou National Forest, Oregon. The wildfire burned previously established 100-year-old conifer control and thinned experimental units, which allows comparison with prescribed burn and unburned units. This research evaluates the O horizon and mineral soil charcoal, a key fire-related soil component that affects physical and chemical properties. Charcoal C was quantified by a peroxide-acid digestion method developed for forest soils. Charcoal C was 17% of the organic C for a reference Australian Vertisol soil and 9% for a German Chernozem, which are similar to published values from a dichromate digestion method. The charcoal C of the Siskiyou LTEP soils was quantified in hand-sorted charcoal from the O horizon and in the \u3c 4-mm fraction of the A (0-3 cm depth) and B1 (3-15 cm depth) mineral soil horizons. The mineral soils contained substantial amounts of charcoal C and no changes were detected as a result of prescribed or wildfire. Concentrations were 10 g charcoal C/kg in A horizon and 7 g charcoal C/kg in B1 horizon and areal masses averaged 1,860 kg charcoal C/ha in A layer soils and 5,260 kg charcoal C/ha for B1 layer soils. Charcoal C in the O layer averaged 18 kg charcoal C/ha prior to the fire and was increased by a factor of 5 by both prescribed fire and wildfire. The effect of thinning on wildfire-induced charcoal C changes was non-significant. Charcoal was formed at a rate of 0.5 - 6.0% of surface woody fuels consumed in the wildfire. Long-term soil C sequestration in the Siskiyou - LTEP soils is greatly influenced by the contribution of charcoal C, which makes up 20% of mineral soil organic C. The significant effect of recent fire on the O layer soils demonstrates the significant short-term effects of the Biscuit Wildfire and the dynamic nature of the O layer. This research reiterates the importance of wildfire and prescribed fire to soil C in a Southwestern Oregon coniferous forest ecosystem

    A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes

    Get PDF
    Plants employ a range of strategies to increase phosphorus (P) availability in soil. Current soil P extraction methods (e.g. Olsen P), however, often fail to capture the potential importance of rhizosphere processes in supplying P to the plant. This has led to criticism of these standard approaches, especially in non-agricultural soils of low P status and when comparing soil types across diverse landscapes. Similarly, more complex soil P extraction protocols (e.g. Hedley sequential fractionation) lack functional significance from a plant ecology perspective. In response to this, we present a novel procedure using a suite of established extraction protocols to explore the concept of a protocol that characterizes P pools available via plant and microbial P acquisition mechanisms. The biologically based P (BBP) extraction was conducted by using four extractions in parallel: (1) 10 mM CaCl2 (soluble P); (2) 10 mM citric acid (chelate extractable P); (3) phytase and phosphatase solution (enzyme extractable organic P); (4) 1 M HCl (mineral occluded P). To test the protocol, we conducted the analyses on a total of 204 soil samples collected as part of a UK national ecosystem survey (Countryside Survey) in 1998 and repeated again in 2007. In the survey, Olsen P showed a net decline in national soil P levels during this 10 year period. In agreement with these results, soluble P, citrate extractable P and mineral occluded P were all found to decrease over the 10 year study period. In contrast, enzyme extractable organic P increased over the same period likely due to the accumulation of organic P in the mineral soil. The method illustrates a noted shift in P pools over the 10 year period, but no net loss of P from the system. This new method is simple and inexpensive and therefore has the potential to greatly improve our ability to characterise and understand changes in soil P status across complex landscapes

    Fire, Charcoal, and the Biogeochemistry of Carbon and Nitrogen in Pacific Northwest Forest Soils

    No full text
    Thesis (Ph.D.)--University of Washington, 2017-03The rain shadow forests of the Olympic peninsula represent a unique, mixed-severity fire regime class in the midst of a highly productive landscape where spatial heterogeneity of fire severity may have significant implications for below and aboveground post-fire recovery. The purpose of this study was to quantify the impacts of wildfire on forest carbon (C) and nitrogen (N) pools and assess the influence of charcoal in a mixed-severity ecosystem on the Olympic Peninsula, Washington, USA. We established a fire chronosequence in forest stands ranging in time since fire (TSF) from 3 to 115 years prior to site establishment. At each site, we measured vegetation abundance, overstory composition, and attributes of surface mineral soil to a depth of 10 cm and forest floor organic matter that included pH, texture, bulk density, and C and N pools (dissolved organic C [DOC], phenol, ammonium, nitrate). Non-ionic resin lysimeters were buried at the interface of organic and mineral soil to measure the O-horizon leached DOC that would contact charcoal particles on the forest floor. Charcoal particles collected from the chronosequence sites were used in adsorption batch experimentation with phenol as a sorbate and measured an average 29.70 (± 6.23) μg phenol mg charcoal-1 adsorption capacity, which did not differ significantly between chronosequence sites. Wildfire-produced charcoal along the chronosequence showed high variability in adsorption capacity, which was partially explained by the thermogravimetric region of volatilized adsorbed compounds onto charcoal surfaces. The O-horizon leachate averaged 1.05 (SD ± 2.87) g DOC m-2 year-1 and increased significantly along the TSF gradient (Pearson’s r = 0.52; p < 0.0001). Multivariate, non-parametric analysis of soil and vegetation factors showed a significant relationship with the time since fire gradient between sites (p-value < 0.01) but not within sites. The TSF gradient was significantly correlated to charcoal mass in the O-horizon (r = -0.4), O-horizon C (r = 0.4), phenolic content in both O-horizon (r = 0.4) and mineral soils (r = 0.2), and potentially mineralizable N (r = 0.4). Recent sites contained higher mineral soil total N and inorganic available N, though not significantly correlated with the TSF gradient. Over time, soils appear to shift toward phenolic-rich organic and mineral soils, higher moss cover, and a higher potentially mineralizable nitrogen index. This study provides evidence of a multivariate, belowground soil response that is less sensitive to wildfire disturbances than the aboveground vegetation

    Function of Wildfire-Deposited Pyrogenic Carbon in Terrestrial Ecosystems

    No full text
    Fire is an important driver of change in most forest, savannah, and prairie ecosystems and fire-altered organic matter, or pyrogenic carbon (PyC), conveys numerous functions in soils of fire-maintained terrestrial ecosystems. Although an exceptional number of recent review articles and books have addressed agricultural soil application of charcoal or biochar, few reviews have addressed the functional role of naturally formed PyC in fire-maintained ecosystems. Recent advances in molecular spectroscopic techniques have helped strengthen our understanding of PyC as a ubiquitous, complex material that is capable of altering soil chemical, physical, and biological properties and processes. The uniquely recalcitrant nature of PyC in soils is partly a result of its stable C = C double-bonded, graphene-like structure and C-rich, N-poor composition. This attribute allows it to persist in soils for hundreds to thousands of years and represent net ecosystem C sequestration in fire-maintained ecosystems. The rapid formation of PyC during wildfire or anthropogenic fire events short-circuits the normally tortuous pathway of recalcitrant soil C formation. Existing literature also suggests that PyC provides an essential role in the cycling of certain nutrients, greatly extending the timeframe by which fires influence soil processes and facilitating recovery in ecosystems where organic matter inputs are low and post-fire surface soil bacterial and fungal activity is reduced. The high surface area of PyC allows for the adsorption a broad spectrum of organic compounds that directly or indirectly influence microbial processes after fire events. Adsorption capacity and microsite conditions created by PyC yields a “charosphere” effect in soil with heightened microbial activity in the vicinity of PyC. In this mini-review, we explore the function of PyC in natural and semi-natural settings, provide a mechanistic approach to understanding these functions, and examine examples of such mechanisms in published literature

    Biochar increases tree biomass in a managed boreal forest, but does not alter N2O, CH4, and CO2 emissions

    Get PDF
    Biochar soil amendment may provide the forestry sector with a formidable tool to simultaneously sequester carbon (C) in the soil and aboveground by enhancing plant productivity, yet several key uncertainties remain. Crucially, empirical evidence of long-term effects of biochar management on vegetation and on greenhouse gas emissions in forest ecosystems is scarce. Using a large field experiment in a young managed boreal forest in northern Sweden, we investigated the effects of biochar (applied either on the soil surface or mixed in the soil 8-9 years prior to this study) on supply rates of soil nutrients, on survival and growth of planted Pinus sylvestris, on community composition of the understory vegetation, and on forest floor fluxes of N2O, CH4, and CO2. We found that biochar promoted P. sylvestris survival only when biochar was applied on the soil surface. Conversely, biochar enhanced P. sylvestris growth overall, resulting in a 19% increase in C stored in biomass. Biochar also altered the composition of the understory vegetation, especially when mixed into the soil, and promoted a more resource-conservative community (i.e., with more ericaceous shrubs and less graminoids and forbs). Meanwhile, supply rates of the main soil nutrients were largely unaffected by biochar. Finally, we found that biochar did not alter overall N2O and CO2 emissions and CH4 uptake from the forest floor. Our findings show that biochar amendment increased the net C input to the system, since, besides directly increasing soil C stocks, biochar enhanced biomass growth without increasing soil C losses. Therefore, our study suggests that biochar could potentially be used for emissions abatement in intensively managed boreal forests

    No evidence that conifer biochar impacts soil functioning by serving as microbial refugia in boreal soils

    Get PDF
    It is well established that application of biochar to soils can promote soil fertility, which ultimately may enhance plant growth. While many mechanisms have been proposed to explain this, one specific mechanism, the “microbial refugia hypothesis,” suggests that biochar may provide physical protection for soil microbe from soil microfauna that otherwise exert top-down control on microbial biomass and activity. We tested the microbial refugia hypothesis by incubating two boreal soils with and without biochar derived from a wood mixture of boreal tree species (Picea abies and Pinus sylvestris), and with and without soil nematodes. We measured phospholipid fatty acids (PLFA) as a relative measure of microbial biomass, and several variables indicative of microbial activity, including extractable nutrient concentrations (NH4+, NO3−, and PO4−), heterotrophic N2-fixation, and soil respiration. Contrary to our expectations, we found that biochar by itself did not stimulate microbial biomass or activity. Furthermore, we found that nematode addition to soil stimulated rather than depressed the biomass of several bacterial PLFA groups. Finally, interactive effects between the nematode treatment and biochar never worked in a way that supported the microbial refugia hypothesis. Our findings suggest that a typical boreal biochar applied to boreal soils may not have the same stimulatory effect on microbial biomass and activity that has been shown in some other ecosystems, and that enhanced plant growth in response to biochar addition sometimes observed in boreal environments is likely due to other mechanisms, such as direct nutrient supply from biochar or amelioration of soil pH

    Accessing the Life in Smoke: A New Application of Unmanned Aircraft Systems (UAS) to Sample Wildland Fire Bioaerosol Emissions and Their Environment

    No full text
    Wildland fire is a major producer of aerosols from combustion of vegetation and soils, but little is known about the abundance and composition of smoke&rsquo;s biological content. Bioaerosols, or aerosols derived from biological sources, may be a significant component of the aerosol load vectored in wildland fire smoke. If bioaerosols are injected into the upper troposphere via high-intensity wildland fires and transported across continents, there may be consequences for the ecosystems they reach. Such transport would also alter the concept of a wildfire&rsquo;s perimeter and the disturbance domain of its impact. Recent research has revealed that viable microorganisms are directly aerosolized during biomass combustion, but sampling systems and methodology for quantifying this phenomenon are poorly developed. Using a series of prescribed fires in frequently burned forest ecosystems, we report the results of employing a small rotary-wing unmanned aircraft system (UAS) to concurrently sample aerosolized bacteria and fungi, particulate matter, and micrometeorology in smoke plumes versus background conditions. Airborne impaction-based bioaerosol sampling indicated that microbial composition differed between background air and smoke, with seven unique organisms in smoke vs. three in background air. The air temperature was negatively correlated with the number of fungal colony-forming units detected. Our results demonstrate the utility of a UAS-based sampling platform for active sampling of viable aerosolized microbes in smoke arising from wildland fires. This methodology can be extended to sample viable microbes in a wide variety of emissions sampling pursuits, especially those in hazardous and inaccessible environments

    Long and Short-Term Effects of Fire on Soil Charcoal of a Conifer Forest in Southwest Oregon

    No full text
    In 2002, the Biscuit Wildfire burned a portion of the previously established, replicated conifer unthinned and thinned experimental units of the Siskiyou Long-Term Ecosystem Productivity (LTEP) experiment, southwest Oregon. Charcoal C in pre and post-fire O horizon and mineral soil was quantified by physical separation and a peroxide-acid digestion method. The abrupt, short-term fire event caused O horizon charcoal C to increase by a factor of ten to &gt;200 kg C ha&lt;sup&gt;−1&lt;/sup&gt;. The thinned wildfire treatment produced less charcoal C than unthinned wildfire and thinned prescribed fire treatments. The charcoal formation rate was 1 to 8% of woody fuels consumed, and this percentage was negatively related to woody fuels consumed, resulting in less charcoal formation with greater fire severity. Charcoal C averaged 2000 kg ha&lt;sup&gt;−1&lt;/sup&gt; in 0–3 cm mineral soil and may have decreased as a result of fire, coincident with convective or erosive loss of mineral soil. Charcoal C in 3–15 cm mineral soil was stable at 5500 kg C ha&lt;sup&gt;−1&lt;/sup&gt;. Long-term soil C sequestration in the Siskiyou LTEP soils is greatly influenced by the contribution of charcoal C, which makes up 20% of mineral soil organic C. This research reiterates the importance of fire to soil C in a southwestern Oregon coniferous forest ecosystem
    corecore