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 Existing methods for assessing phosphorus (P) availability do not adequately reflect plant 

P acquisition strategies 

 We evaluated a novel P extraction procedure to explore the concept of biologically based 

P protocol 

 Soil P was extracted in parallel with CaCl2, citric acid, phytase and phosphatase solution 

and 1 M HCl 

 We tested this method on 204 soil samples collected in the United Kingdom and 

compared it with the standard Olsen P method 

 This method helped explain an observed downward trend in Olsen P from 1998 to 2007 

as a shift from inorganic to organic P. 

 This method can be used as a means of assessing P availability across complex 
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ABSTRACT 17 

Plants employ a range of strategies to increase phosphorus (P) availability in soil. Current soil 18 

P extraction methods (e.g. Olsen P), however, often fail to capture the potential importance of 19 

rhizosphere processes in supplying P to the plant. This has led to criticism of these standard 20 

approaches, especially in non-agricultural soils of low P status and when comparing soil 21 

types across diverse landscapes. Similarly, more complex soil P extraction protocols (e.g. 22 

Hedley sequential fractionation) lack functional significance from a plant ecology 23 

perspective. In response to this, we developed a novel procedure using a suite of established 24 

extraction protocols to explore the concept of a P protocol based on biologically significant P 25 

pools, fluxes and transformations. Soil P was extracted in parallel by using 10 mM CaCl2 26 

(soluble P), 10 mM citric acid (chelate-labile P), phytase and phosphatase solution (enzyme 27 

labile organic P) and 1 M HCl (mineral occluded P). To test the integrated protocol, we 28 

conducted the analyses on 204 soil samples collected as part of a UK national ecosystem 29 

survey (Countryside Survey) in 1998 and repeated again in 2007. Overall, Olsen P showed a 30 

net decline in national soil P levels during this 10 year period. In accordance with these 31 

results, soluble P, chelate-labile P and occluded P were all found to decrease over the 10 year 32 

study period. In contrast, enzyme labile organic P increased over the same period likely due 33 

to the accumulation of P in litter and O horizon organic matter. This new method is simple 34 

and inexpensive and therefore has the potential to greatly improve our ability to characterise 35 

and understand changes in soil P status across complex landscapes.  36 

 37 

Keywords: Bioavailability, Ecosystem assessment, Nutrient index, Phosphate, Soil quality 38 

indicator 39 
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1. Introduction 40 

Increasing food security concerns and decreasing mineable phosphorus (P) supplies 41 

necessitate efficient use of soil P resources; however, current methods used to assess plant 42 

available P are often ineffective when used on landscapes with a great degree of plant and soil 43 

heterogeneity. Soil P exists in a variety of forms including soluble inorganic, insoluble 44 

inorganic (Pi), organic, and surface adsorbed with the amounts present in each fraction 45 

varying greatly between soil types (Bieleski, 1973).  46 

The ability to effectively assess soil P status and phytoavailability is extremely 47 

important in terms of environmental protection and agricultural productivity; however, 48 

phytoavailable P is not a distinct value for any given soil (Withers et al., 2014). Importantly, 49 

plants express unique mechanisms for releasing P from different pools of differing 50 

recalcitrance, each contributing to varying extents depending upon several plant and soil 51 

parameters (Neumann and Römheld, 1999; Lambers et al., 2006). Current efforts to monitor 52 

soil P status are based on methods specifically developed for agricultural purposes with the 53 

specific objective of estimating the phytoavailability of soil P and enabling fertiliser rate 54 

recommendations (e.g. Mehlich, 1978; Menon et al., 1989; Saggar et al., 1992; Sims et al., 55 

2000). Commonly, these are single solution extractions (e.g. NaHCO3 or acid NH4F) which 56 

correlate with plant Pi uptake in a controlled environment (e.g. Bray and Kurtz, 1945; Olsen 57 

et al., 1954; Mehlich, 1984). These extractions have proved very useful for agriculture as they 58 

offer a straightforward index of P fertility. Across complex landscapes; however, single 59 

extraction methods do not adequately characterise the bioavailability of P which is directly 60 

influenced by plant community and shifts in soil biophysical conditions. Phosphorus 61 

fractionation schemes were developed in an attempt to better characterize the P status of soils 62 

(e.g. Hedley et al. 1982). Such fractionation approaches expose a single soil sample to a 63 

sequence of extractants to quantify pools of progressively occluded P.  These approaches 64 
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offer a more detailed picture of soil P status, are more suited to use over complex landscapes, 65 

offer some sense of how P might become available over time and they can provide an 66 

indication of the mechanisms controlling P solubility in a given soil (Cross and Schlesinger, 67 

1995; Levy and Schlesinger, 1999; Negassa and Leinwieber, 2009). Examples of 68 

fractionation methods include the widely adopted Hedley procedure (Hedley et al., 1982) or 69 

the Chang and Jackson method (Chang and Jackson, 1957). Unfortunately, fractionation 70 

methods are time consuming and require careful preparation making them inappropriate for 71 

routine use, especially in agriculture. Furthermore, these fractionations do not adequately 72 

reflect rhizosphere processes (Johnson et al., 2003; Yang and Post, 2011). Phosphorus 73 

solubilised by rhizosphere processes (in particular organic acid, proton and ectoenzyme 74 

excretion) are not individually characterised in these schemes. Instead, chemical analogues 75 

are used which, while they may correlate well with plant availability or P accumulation with 76 

soil development, they do not offer insight into the potential P uptake mechanisms or 77 

rhizosphere P transformations that drive ecosystem P dynamics.  78 

In this paper we introduce an alternative functional plant trait-based approach to 79 

evaluate soil P status. Here we combine together four established approaches to assessing 80 

different pools of bioavailable P thereby simultaneously assessing soil P as influenced by 81 

plant rhizosphere mediated processes across a diverse array of soils. The extractants were 82 

chosen to emulate four common and significant plant rhizosphere mediated P acquisition 83 

mechanisms: (1) root interception, (2) organic acid complexation, (3) enzyme hydrolysis and 84 

(4) proton excretion induced acidification. Rather than sequentially extracting these P pools 85 

as in the Hedley fractionation, we run the extractions in parallel to measure the total amount 86 

of P mobilised by each individual test. The purpose of this effort was to create a simple P 87 

assessment regime that reflects rhizosphere mediated P availability, is sensitive to landscape 88 

variation in soil P status, and facilitates evaluation of short, medium and long term fluxes 89 
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between P pools. The combined analyses are collectively referred to as the Rhizosphere 90 

Based P (RBP) extraction regime.  The RBP method is compared with the standard Olsen P 91 

method across a variety of soils and is compared on field moist and air dried soils. 92 

 93 

2. Materials and methods 94 

2.1. Soils 95 

For the main study, soil samples were collected throughout the UK as part of the 96 

Centre for Ecology and Hydrology Countryside Survey (CS) in 1998 (CS98) and 2007 97 

(CS07) with sites representing all the dominant landscape types and soil groups in the UK 98 

(Emmett et al., 2010; Reynolds et al., 2013). To encompass all the major soil and land use 99 

types, a total of 2614 soil samples were collected throughout the UK, based on a stratified 100 

random sample of 1 km squares at gridpoints on a 15 km grid using the Institute of Terrestrial 101 

Ecology (ITE) Land Classification as the basis of the stratification (Wood et al., 2012). At 102 

each grid intersection, a 1 km
2
 sample area was selected. Within the 1 km

2
 sample area, 3 103 

plots (5 × 5 m
2
) were randomly located and a single 15 cm long × 4 cm diameter soil sample 104 

was collected from each of the plots. Additional information about vegetation and soils were 105 

also collected from the same plots. To facilitate comparison of P pool concentrations during 106 

the two sample dates, we used the vegetation and soil categories provided in the CS (Emmett 107 

et al., 2010). For plant communities we used the „Aggregate Vegetation‟ grouping which 108 

includes eight categories: 1) lowland wooded; 2) upland wooded; 3) crops and weeds; 4) tall 109 

grass and herbs; 5) fertile grassland; 6) infertile grassland; 7) moorland; 8) heath and bog. For 110 

soil types, we use the loss-on-ignition categories of: 1) mineral; 2) humus-mineral; 3) organo-111 

mineral; 4) organic. The 1 km
2
 areas were stratified within the 45 major Land Classes of the 112 

UK. All the sites were characterised by a temperate climate with a North-South mean annual 113 
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temperature range of 7.5 to 10.6°C and East-West mean annual rainfall range from 650 to 114 

1700 mm.  115 

Samples were stored at 4°C prior to analysis for key characteristics including pH, 116 

total C and N, mineralisable C and N, Olsen-P (0.5 M NaHCO3, pH 8.5), bulk density and 117 

soil biota as described in Emmett et al. (2008), Emmett et al. (2010), Simfukwe et al. (2011) 118 

and Reynolds et al. (2013).  All remaining sample was then air-dried and sieved prior to long 119 

term storage and use in this study.  120 

To assess the changes in soil P seen between the 1998 and 2007 Countryside Survey, a 121 

subset of 102 spatially paired soils (204 in total) from the CS98 and CS07 archived soils was 122 

selected randomly. In order to represent the archive‟s spatial diversity, the samples were 123 

stratified according to their “Environmental Zone” – nine classifications derived from 124 

Institute of Terrestrial Ecology Land Classes which reflect an array of geographically distinct 125 

regions of Britain (Bunce et al., 1996). Across all land use and vegetation classes the 126 

dominant soil types (% of total) were brown soils (33%), surface water gley soils (19%), 127 

podzolic soils (14%), peat soils (12%), groundwater gley soils (11%), lithomorphic soils (8%) 128 

and pelosol soils (3%) (Avery, 1990; Simfukwe et al., 2011). These soils were assessed using 129 

the novel Rhizosphere Based P (RBP) extraction regime described below and for total C 130 

based on loss-on-ignition (Nelson and Sommers, 1982; Reynolds et al., 2012).  131 

 132 

2.2. Principles behind the proposed RBP method 133 

We employed four existing soil P analysis methods to provide a clear picture of soil P 134 

status as influenced by plant rhizosphere mediated processes. Phosphorus in soil can be 135 

grouped into three primary pools: (1) readily available, dissolved orthophosphate, (2) more 136 

recalcitrant “active P” forms which, over time, are solubilised to replenish this readily 137 

available pool, and (3) fixed P which may remain unchanged in soil for many years. The 138 
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method below herein uses a combination of established extraction procedures to represent the 139 

P solubilised by the four primary plant P acquisition mechanisms: (1) root interception, (2) 140 

organic acid complexation/dissolution, (3) enzyme hydrolysis and (4) proton excretion 141 

induced acidification. The procedures were adapted in order to correspond to the maximum 142 

level of each extractant reported in the literature.  143 

Each fraction was measured in parallel by shaking 0.5 g of soil with each extractant 144 

(10 ml; described below) in separate 15 ml centrifuge tubes for 3 h on a reciprocal shaker at 145 

200 rev min
-1

. Preliminary work showed 3 h to be the point at which equilibrium was reached 146 

between soil- and solution-P. Extracts were then centrifuged (3,220 g, 30 min) to negate the 147 

need to filter the supernatant (Poile et al., 1990). An aliquot of the supernatant was then 148 

decanted and stored for no more than 3 d at 4°C prior to analysis. 149 

Soluble P was assessed using a 10 mM calcium chloride (CaCl2) solution which 150 

corresponds to labile P that is easily available to plants (Bieleski, 1973; van Raij, 1998). 151 

Typically, this is a relatively small pool of P which root hairs and arbuscular mycorrhizas 152 

might remove directly from the soil solution. 153 

Organic acid extractable P was assessed using a 10 mM solution of citric acid to 154 

quantify the chelate-extractable, active pool of P sorbed to clay particles or as compounds of 155 

Ca, Fe or Al which have been shown to be accessible to plants following the release of 156 

organic acids into soil (Jones and Darrah, 1994; Hinsinger, 2001; Johnson and Loeppert, 157 

2006; Li et al., 2007). Citrate extractable P was chosen over acetic acid or oxalic acid, 158 

because it does not interfere with the P analysis reagents described below and is frequently 159 

implicated in root and microbial P mobilization in soil. 160 

Phosphatase (acid phosphatase from wheat germ; Sigma P3627; Enzyme Commission 161 

Number 232-630-9) and phytase (from wheat, Sigma P1259; Enzyme Commission Number 162 

3.1.3.26) enzymes were used to evaluate the quantity of available organic P. The final 163 
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concentration of the enzymes in the extraction solution was 0.02 enzyme units ml
-1

.
 
This 164 

concentration was sufficient to ensure that they would be present in excess. The solution is 165 

prepared by the addition of phosphatase and phytase to a sodium acetate buffer (50 mM, pH 166 

6.5) with MgCl2 (0.08 mM) added as a pre-enzyme activator (Ahlers, 1974).  We should note 167 

here that in more recent enzyme assays we have found commercially available phytase 168 

(purchased from Sigma) to be contaminated with P so we have since switched to only using 169 

phosphatase. 170 

The more recalcitrant P was extracted using 1.0 M HCl. This recalcitrant P fraction is 171 

thought to be solubilised by proton excretion in the rhizosphere and by microbial processes 172 

(Petersen and Böttger, 1991; Gahoonia et al., 1992).  173 

All extracts were diluted appropriately and analysed colorimetrically (630 nm) using 174 

the malachite-green method as described in Ohno and Zibilske (1991) using a PowerWave-175 

XS microplate spectrophotometer (BioTek Instruments Inc., Winooski, VT). Malachite-green 176 

was chosen over the standard molybdate blue method (Murphy and Riley, 1962), as it is 177 

highly sensitive and not susceptible to interference from organic acids. The method was 178 

slightly modified to incorporate a ten-fold in-plate dilution where necessary.  179 

The standard method used for assessing P availability in the CS is the Olsen-P method 180 

(Allen, 1989). Briefly, 5 g of air-dried soil was mixed with 100 ml of 0.5 M sodium 181 

bicarbonate at pH 8.5. Phosphate in the extract was then determined colorimetrically by 182 

molybdate blue at 880 nm using a Skalar continuous flow analyser with the addition of a 183 

dialysis step to overcome the effect of the Olsen‟s reagent. 184 

 185 

2.3. Comparison of Olsen P and the RBP method in field-moist soils  186 

 The soils evaluated in Section 2.2 were all air-dried prior to extraction (following the 187 

UK national soil inventory protocol). To compare the proposed RBP method with the 188 
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standard Olsen P method in field-moist and air dried samples, we collected 27 independent 189 

soil samples (0-10 cm) from different farms within the Hiraethlyn catchment in North Wales 190 

(53°10°N, 3°45‟W; area = 27 km
2
). The samples were characterised as described above with 191 

exception of ammonium (NH4
+
) and nitrate (NO3

-
) which were measured in 0.5 M K2SO4 192 

extracts as described in Jones and Willett (2006). The samples ranged in soil organic matter 193 

content from 4.61 to 18.19 % (mean ± SEM, 10.54 ± 0.62%), pH from 4.76 to 6.36 (mean ± 194 

SEM, 5.57 ± 0.08), moisture content from 7.8 to 80.8% (mean ± SEM, 49.5 ± 4.0), available 195 

NO3
-
 from 2.4 to 49.1 mg kg

-1
 (mean ± SEM, 15.4 ± 1.9 mg kg

-1
), available NH4

+
 from 0.8 to 196 

42.9 mg kg
-1

 (mean ± SEM, 5.6 ± 1.7) and available K from 61 to 364 mg kg
-1

 (mean ± SEM, 197 

157 ± 15). The soils were sieved to pass 5 mm and stored at 5°C until weighed out for 198 

extraction as either fresh (field moist, corrected to dry weight based on moisture content) and 199 

air dried (dried for 48 hours at room temperature) were extraction using the RBP procedure as 200 

described above.   201 

 202 

2.4. Statistical analysis 203 

A one-way ANOVA was used to detect changes in P concentration between the two 204 

survey years for the different fractions. Data were then split according to one of three 205 

grouping variables, namely (1) vegetation community type, (2) broad ecosystem type, and (3) 206 

soil organic matter content (measured via loss-on-ignition) and ANOVA undertaken to 207 

identify differences in P concentration. Pearson correlations were used to assess the 208 

relationship between our individual extraction techniques and that of the standard Olsen P 209 

method employed on the Countryside Survey. Principle components analysis (PCA) was used 210 

to explore variability, patterns, and relationships between P concentrations (mg kg
-1

) of the 211 

four P pools and Olsen P. Significant (p < 0.05) environmental and soil characteristic vectors 212 

were fit onto the PCA ordination. In a PCA, maximum variances are accounted for but a 213 
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normal distribution of the population is not a requirement (Reimann et al., 2011). Incomplete 214 

observations were excluded from PCA except for AgClass where two blank values for 1998 215 

data were substituted with 2007 values. Outliers were included in the analysis. Data was 216 

scaled to ensure homogeneity of variances. Correlations and ANOVA were analysed using 217 

SPSS 16 for windows (SPSS Inc., Chicago, IL) and PCA was run using the vegan package 218 

(Oksanen et al., 2013) in the R Statistical Environment (R Version 3.0.3, http://www.r-219 

project.org/). For comparison of P fractions in the field-moist soils, linear regression and t-220 

tests were undertaken using Minitab v16 (Minitab Inc, State College, PA).  221 

  222 

3. Results  223 

3.1. Relationship between the soil P extractants 224 

  Three of the methods used in our rhizosphere-based P fractionation protocol were 225 

highly correlated with the Olsen P method with the exception of the enzyme extraction 226 

method which was weakly correlated with Olsen P (P < 0.05; Table 1). Citrate-extractable P 227 

was most highly correlated (r
2
 = 0.563, P < 0.001) with the enzyme extraction closely 228 

followed by the 1.0 M HCl extraction (r
2
 = 0.432, P < 0.001). All three of these methods are 229 

effective at accessing moderately soluble mineral adsorbed and precipitated mineral forms of 230 

P. The HCl extractable P was also highly correlated (r
2
 = 0.732, P < 0.001) with citrate 231 

extractable P.  232 

 The relationship between the four P extraction methods of RBP and that of Olsen P 233 

are further demonstrated in Figure 1. Using principal components (PC) analyses, we found 234 

that PC1 explains 48.66% of the total variation in the P concentration across methods and 235 

PC2 accounts for 20.71% of the total variation. Figure 1 provides a visualization of PCA 236 

scores, calculated by observations and displayed by grey dots, in relation to the loadings, or P 237 

methods (in blue). The lengths of the arrows are proportional to the variability explained by 238 
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PC1 and PC2 and angles between loadings represent the correlation between the variables.  239 

The arrows labeled with environmental or soils characteristics (in red) point to the direction 240 

of the most rapid change across that variable and lengths indicate the correlation of that 241 

variable and the P method ordination. Factor loadings for this PCA reveal close associations 242 

between citrate and HCl-extractable P. Enzyme-extractable P explains the least variability in 243 

the data is markedly distinct from all other methods.  244 

 245 

3.2. Country scale changes in soil P status 246 

Assessing the change in P pools in the UK Countryside Survey soils over the 10 year 247 

period, we observed a significant decrease in P in the inorganic P fractions (HCl, CaCl2 and 248 

citrate extractable). The largest percentage change was observed in the CaCl2, or soluble, 249 

fraction with a 41% decrease (P < 0.05) from 1998 to 2007 (Table 1). Citrate extractable P 250 

decreased significantly (P < 0.01) from 284 mg P kg
-1 

to 188 mg P kg
-1 

between 1998 and 251 

2007. The less labile inorganic (Pi), as extracted by HCl, decreased from 573 to 399 mg kg
-1

 252 

(P < 0.05) during this same period. Interestingly, enzyme extractable P increased (P < 0.001) 253 

by more than a factor of two from 130 mg kg
-1

 in 1998 to 291 mg kg
-1

 in 2007. The increase 254 

in organic extractable P may partially explain the decrease in inorganic P fractions as there 255 

was no significant difference between the sum of the averages of the four extractants for the 256 

two sampling dates.  257 

Taking the UK as a whole, the pattern of decreasing available inorganic P (based on 258 

an Olsen-P bicarbonate extraction) described in 2007 CS is corroborated by the shift in 259 

inorganic P pools as demonstrated by the RBP.  260 
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 261 

3.3. Changes in soil P with vegetation community and soil organic matter types  262 

The general trend of decreasing inorganic P and increasing organic P is apparent when 263 

soils are grouped by plant community. Ecosystem type or aggregate vegetation class (AVC) 264 

describes the predominant habitat of the parcel of land on which the sampling plot is located. 265 

The HCl-extractable P consistently made up the largest P fraction as it likely accounts for 266 

most of the P in the more labile inorganic P pools. Enzyme extractable organic P (Po) 267 

increased (Fig. 2) from 1998 to 2007 and inorganic P as extracted by citrate and HCl 268 

decreased during this same period (Fig. 2). However, no significant changes were observed 269 

for the labile CaCl2 fraction (Fig. 2). No significant changes were seen for either of the AVC 270 

woodland classifications (Upland woodland and Lowland woodland) or under the crop and 271 

weed category. The HCl extractable P decreased by 569 mg P kg
-1

 (P < 0.05) under tall grass 272 

and herb. Enzyme-extractable organic P increased (P < 0.05) in fertile and infertile 273 

grasslands, heath and bog, and moorland, while citrate-extractable inorganic P increased; 274 

however, the changes in both fractions in heath and bogs are much larger than in the 275 

grasslands.  276 

Within the four soil organic matter (SOM) status groupings, larger changes in P were 277 

observed in the soils with the highest C contents. In particular, we observed a decrease in the 278 

inorganic P fractions extracted with CaCl2, citrate and HCl. Enzyme-extractable organic P did 279 

not follow a specific pattern with soil SOM status  (Fig. 3). However, in all but the organo-280 

mineral classifications there was a significant (P < 0.05) increase in enzyme-extractable 281 

organic P and significant (P < 0.05) decreases in HCl-extractable P in the highest and lowest 282 

SOM categories as well as large significant decreases in citrate-extractable inorganic P (Fig. 283 

4).  284 
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 285 

3.4. Comparison of Olsen P and the RBP method in field-moist and dried soils  286 

 Using the Olsen extraction method, the field-moist samples from the Hiraethlyn 287 

agricultural catchment in North Wales showed a wide range of P levels ranging from 6 to 63 288 

mg P kg
-1

 (mean ± SEM, 27 ± 3). Overall, P concentrations in the Olsen extracts were 289 

significantly correlated with P recovered in all four proposed RBP extraction regime (Fig. 4). 290 

Of these, the best correlation was seen with the citrate extraction (r
2
 = 0.87), while the 291 

weakest correlation was found between the enzyme-based and Olsen bicarbonate extraction 292 

(r
2
 = 0.16).  Soil P pools in moist versus dry soils were found to be closely aligned for all P 293 

pools (Fig 5); however, air drying nearly doubled P extraction by citrate (P < 0.01) and 294 

enzymes (P < 0.001) and slightly increased CaCl2 soluble P (P < 0.05).  Air drying of soils 295 

slightly decreased P extraction by using 1 M HCl (P < 0.05). 296 

 297 

4. Discussion 298 

4.1. Basing an assessment of available P on known rhizosphere processes 299 

Bicarbonate extraction of soil, or Olsen P, is one of the most widely adopted test used 300 

for assessing soil P availability. Further, it is often used in broad regional or national scale 301 

assessments of soil P status (e.g. Sparling and Schipper, 2004; Emmett et al., 2010; Zhang et 302 

al., 2012). While highly suited to near-neutral or alkaline pH agricultural soils, Olsen P has 303 

been shown to be of less use in predicting plant available P in semi-natural acidic and peat 304 

soils (Kuo, 1996; Emmett et al., 2008). For example, across a diverse range of agricultural 305 

soils (n = 164), Speirs et al. (2013) demonstrated that Olsen-P only provides an approximate 306 

guide to plant P availability (correlation between Olsen P and wheat yield, r
2
 = 0.064). 307 

Further, Jordan-Meille et al. (2012) have openly criticised current soil P availability testing 308 

procedures calling for “a more mechanistic approach in which the processes involved in plant 309 
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P nutrition are truly reproduced by a single standard method”. This has led to the emergence 310 

of alternative approaches such as diffusive gradient thin films (DGT) which have proven to 311 

provide better predictors of plant P availability than Olsen P (Six et al., 2014). The DGT 312 

technique is highly suited to soils receiving high levels of fertiliser where plant capture is 313 

largely related to sorption-desorption reactions and where rhizosphere P acquisition 314 

mechanisms are down-regulated. However, we do not feel that a single chemical extraction or 315 

technique like DGT adequately represents P availability in more P limited non-agricultural 316 

environments where plants may be expressing a diverse array of mechanisms to exploit soil P 317 

reserves. In our view this complexity needs to be captured by parallel extractions.  318 

In both the national and regional scale examples used here, we clearly demonstrate 319 

that the three inorganic P accessing extractants of the RBP method (CaCl2, citrate and HCl) 320 

all correlate to some extent with Olsen P, but each provides insight into the source of the P; 321 

soluble (directly available to roots and arbuscular mycorrhizas; Bolan, 1991), chelate labile 322 

(available by the release of organic acids from roots and ectomycorrhizas; Jones and Darrah, 323 

1994), or proton labile (release of H
+
 by root tips and ectomycorrhizas; Römheld et al., 324 

1984). Enzyme extractable P, however, represents labile organic P (Tabatabai, 1994), a 325 

component of soil P not effectively accessed by bicarbonate (Kuo, 1996) thereby explaining 326 

the relatively weak factor loadings for enzyme extractable P compared to inorganic P 327 

methods. The orthogonal correlation between soluble P by CaCl2 extraction and HCl-328 

extractable P, and the proximity of other methods, supports the conclusion that CaCl2 and 329 

HCl access labile and recalcitrant forms of P, respectively. Inclusion of the environmental and 330 

soil characteristics reveals that vegetation class is most strongly correlated with the PCA 331 

ordination and it has a negative directional gradient. 332 

 333 

4.2. National scale changes in soil P status 334 
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The final report from CS07 (Emmett et al., 2010) described a surprisingly large 335 

decrease in mean Olsen-P concentration in all broad habitat types across the UK from 43 mg 336 

P kg
-1

 in 1998 to 32 mg P kg
-1

 in 2007 (Table 2). The greatest change was seen in soil beneath 337 

dwarf shrub heath, whilst the highest Olsen-P concentration and smallest significant change 338 

was seen in arable soils. The RBP procedure described here effectively confirmed the 339 

declining trend in inorganic available P described in the UK national survey, CS07 (Emmett 340 

et al., 2010) and provided the clear pattern of increasing labile organic P. Therefore, the 341 

observed decrease in inorganic P over a 10 year period does not specifically reflect a net loss 342 

of P from the system; but rather demonstrates a noted change between pools of P from 343 

inorganic to organic with the significant increase in enzyme extractable organic P. This is 344 

seen across soils in all SOM categories and under all vegetation types to varying extents. As 345 

there is overlap in the P pools quantified by each extractant this cannot be taken as the 346 

average total available P value (in mg P kg
-1

) across the UK. However, it does indicate there 347 

is no net loss of P from UK soils. Further, our results suggest that the inorganic P is not 348 

simply precipitating out into increasingly insoluble forms otherwise we would have observed 349 

a smaller net decrease in the more stringent HCl extraction method where in reality, the 350 

largest decrease in extractable inorganic came with the HCl extraction (e.g. Fig. 2).  351 

The declining chelate and proton labile P could reflect consumption of residual P 352 

without replenishment in the form of fertilisation (Withers et al., 2014). Chelate labile P 353 

reflects P that is available to P-efficient plants whereas HCl labile is a gross proxy for proton 354 

release at plant root tips (Jones, 1998; Hinsinger, 2001; Dakora and Phillips, 2002). Given 355 

that the largest decreases are associated with grasslands (which have progressively been 356 

receiving less P fertilization; 29.5 kg P ha
-1

 in 1983 to <10 kg P ha
-1

 in 2013; Defra, 2014) 357 

suggests that plants harvested for fodder may be mining soil P reserves. The increasing 358 

organic P across many categories of vegetation suggests that P is being taken out of the 359 
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mineral soil by plants and soil biota and is accumulating P in an organic form in litter and O 360 

horizon organic matter. The organic P fraction can make up between 20 and 80% of total P 361 

(Pt) in some soils (Dalal, 1977). A proportion of this will be easily hydrolysed (George et al., 362 

2002; Tang et al., 2006; Tarafdar and Jungk, 1987) and made available for plant uptake, but 363 

the remainder is relatively stable and will remain occluded (Stewart and Tiessen, 1987). The 364 

C density in the four SOM categories corroborates this theory; the patterns of increasing 365 

organic P (Fig. 3c) and C density (Emmett et al., 2008) are very similar.  366 

Increases in organic P in soil O horizon and litter may be attributed to increased 367 

primary productivity due to several confounding environmental changes happening across the 368 

UK over the study period. Increasing atmospheric nitrogen (N) deposition in the UK as 369 

reported in a number of studies (e.g. Galloway et al., 2004; Stevens et al., 2006) has been 370 

shown to increase primary productivity (Cannell et al., 1998) and consequently induce P 371 

limitation through depletion of phytoavailable P. The increased uptake of inorganic P would 372 

then be returned to the soil as organic P. Longer term increases in atmospheric CO2 373 

concentrations (IPCC, 2007) and temperature (Jones and Hulme, 1997) along with increasing 374 

yields due to increasing N fertilization and use of improved hybrids (Jones et al., 2013) may 375 

exacerbate the removal of labile and semi-labile inorganic P. Further, a decrease in external P 376 

inputs may also be partly responsible for this shift in P status of UK soils. P fertiliser use on 377 

grass and crops over the study period decreased by 40% and 35% respectively primarily due 378 

to the increasing cost of P fertilizer (Defra, 2011).  379 

The observed increase in soil pH reported in CS07 from 1998 to 2007 may also 380 

contribute to the observed decrease in P associated with labile fractions. This soil pH 381 

increased was particularly strong in soils with lower organic matter contents and soils with 382 

neutral to alkaline pH (Emmett et al., 2010).  With increasing pH in acidic soils one would 383 

expect an increase in P solubility; however, an increase in the pH of alkaline/calcareous 384 
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would likely enhance precipitation of P as insoluble Ca-P (Samadi and Gilkes, 1999) 385 

rendering the P unavailable to plants. However, the small degree of the change in pH makes it 386 

unlikely that this represents the main driver of the change in P status with the exception of 387 

microsite effects.  388 

  The lack of significant changes in any P pools in woodland habitats suggests that 389 

more complex and successionally advanced habitats were less susceptible to changes in soil P 390 

status. Woodlands often express limited presence of soluble or labile P as nutrient 391 

mineralization and solubilisation is balanced by nutrient uptake and immobilization 392 

associated with litter fall and decomposition (Glenn-Lewin et al., 1992). It could also be that 393 

the slower life histories associated with tree dominated habitats yield slower to responses to 394 

shifts in nutrient inputs. For example, Cannell et al. (1998) modelled the response of conifer 395 

forests to increasing N deposition, atmospheric CO2 and temperature and predicts changes in 396 

soil and plant response over decadal or century timescales. However, Shaw et al. (2002) and 397 

Stevens et al. (2006) saw responses to similar parameters in grassland habitats in a matter of 398 

months and years in both laboratory and field studies.  399 

Given that British soils are relatively immature (ca. 10,000 years old; Avery, 1990), it 400 

is likely that they are still undergoing the changes in form and amounts of P described by 401 

Walker and Syers (1976). They describe soils reaching a terminal steady state at 402 

approximately 22,000 years, before which occluded P and organic P increase at the expense 403 

of more labile fractions. This can be seen to some extent in these results with the increase in 404 

organic P fractions and decrease in labile fractions. However, the changes seen over the short 405 

period studied here likely cannot be attributed wholly to pedogenic processes. Similar to the 406 

CS results for Olsen P, there were no clear relationships between change in any P fraction and 407 

2007 values for soil pH, SOM, moisture content, or with change in soil pH and SOM between 408 

1998 and 2007.  409 
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Drying of soils prior to extraction has been shown to increase P solubility (Turner and 410 

Haygarth, 2001; Styles and Coxson, 2006).  The evaluation of moist and dry soil samples 411 

from Hiraethlyn catchment in North Wales further demonstrates differences between the 412 

Olsen method and the RBP method (Fig. 4) and indicates that use of fresh soils would be a 413 

preferable approach for the RBP method.  This is consistent with the findings of Styles and 414 

Coxson (2006) which demonstrated an increase in extractable P with drying as a result of 415 

destabilization of soil organic matter. Turner and Haygarth (2001) suggested that rewetting of 416 

dried soils released P from the lysing of microbial cells and questioned the use of soil P 417 

analyses that did not take soil moisture into account. In this study, we used air dried soils that 418 

had been previously collected and archived as part of the CS; however, in future efforts, we 419 

would recommend using this method with field moist soils and correcting to dry weight based 420 

on soil moisture content.  421 

Finally, it is important to note that we observed a great deal of variation in the P 422 

content of batches of phytase enzyme reagent and found the some batches to be highly 423 

contaminated with P.  This required extensive dilution which compromised the overall assay 424 

or pre-analysis treatment of the enzymes with dialysis membranes, a time consuming step.  425 

We recommend only using acid phosphatase for the enzyme component of the assay. 426 

 427 

4.3. Conclusions 428 

Soil P transformations occur over both a dynamic, rapid biological cycle and a much 429 

more gradual pedogenic cycle. Further, plant community directly influences P availability 430 

making a single extraction approach inappropriate for natural or seminatural settings with 431 

diverse plant assemblages. Given the limited solubility of P and its propensity to adsorb to 432 

organic and mineral surfaces, almost all plants have evolved to develop specialized 433 

mechanisms for enhancing P acquisition from soil. Therefore, measurement of P across 434 
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landscapes using a single extraction technique is likely to generate artefacts and will not 435 

adequate reflect P bioavailability. The exhaustive, repeated sampling of CS offers an 436 

invaluable opportunity to assess shifts in soil conditions at the national scale. The use of the 437 

single solution bicarbonate method (Olsen P) for assessing soil P status does not adequately 438 

evaluate the P status of soils in the UK. The RBP method has great promise for this type of 439 

survey by providing a simultaneous assessment of biologically available P through the use of 440 

four accepted P methods: 1) Soluble or solution P; 2) Enzyme extractable organic P; 3) 441 

Chelate extractable P; 4) Proton extractable inorganic P. This suite of P extraction methods 442 

offers a great deal of insight into changes occurring across diverse landscapes. The RBP 443 

method proposed here has the potential to greatly improve our ability to characterise the soil 444 

P status across complex landscapes. The RBP method is relatively quick (full assessment of 445 

four P pools on ~56 soils in a day), inexpensive, and requires no specialist equipment making 446 

P fractionation more accessible and feasible for large scale studies. It has proved accurate and 447 

reliable on soils with a range of characteristics.  448 

Future national surveys such as the UK Countryside Survey will help shed light on 449 

whether this is a temporary change in P status in UK soils or a continuing trend. Whichever is 450 

found to be the case, it is not necessarily a worrying phenomenon. Soils in the UK are 451 

typically enriched in P which can cause eutrophication of water bodies (Withers et al., 2000). 452 

If this is removed from the soluble and labile inorganic phase and stabilised in the organic 453 

fraction it might have positive implications for water quality without greatly altering long-454 

term P fertility. Simultaneously, agricultural P fertilizer costs are climbing with increasing 455 

limitation of minable P resources which makes plant P acquisition strategies that much more 456 

important when assessing P availability. The long-term change in P pools observed herein 457 

may also have implications for vegetation community structure and ecosystem dynamics 458 
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especially in a changing climate where community composition is likely to change in semi-459 

natural ecosystems.  460 
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Figure legends 

Fig. 1. Principle component analyses (PCA) of the four P analysis methods of the rhizosphere 661 

based P (RBP) extraction regime and the conventional Olsen P method as determined for 102 662 

soil samples collected in 1998 in the UK Countryside Survey (Emmett et al., 2010). 663 

Observations are displayed by grey dots, in relation to the loadings, P methods are displayed 664 

as blue arrows and environmental or soils characteristics by red arrows.  665 

 666 

Fig. 2. Mean change between 1998 and 2007 in P content (mg kg
-1

) in (a) CaCl2, (b) citrate, 667 

(c) enzyme, and (d) HCl extract fractions of soils collected from different ecosystem types 668 

within the UK. Values indicate means ± SEM. Asterisks indicate significant differences 669 

between years (* P < 0.05, ** P < 0.01). 670 

 671 

Fig. 3. Mean change between 1998 and 2007 in P content (mg kg
-1

) in (a) CaCl2, (b) citrate, 672 

(c) enzyme, and (d) HCl extract fractions within soils of differing soil organic matter status 673 

within the UK. Values indicate means ± SEM. Asterisks indicate significant differences 674 

between years (* P < 0.05, ** P < 0.01, *** P < 0.001). 675 

 676 

Fig. 4. Relationship between Olsen P content and the four fractions of the proposed 677 

rhizosphere trait-based method for field-moist soils collected from within the Hiraethlyn 678 

catchment in North Wales. (a) Olsen P vs. CaCl2; (b) Olsen P vs. citrate; (c) Olsen P vs. 679 

enzyme; (d) Olsen P vs. HCl extract. Lines and associated r
2
 values are linear regression fits 680 

to the experimental data. 681 

 682 

Fig. 5. Relationship between field-moist and air dried soils for the four soil extractions, (a) 683 

CaCl2; (b) citrate; (c) enzyme; (d) HCl of the proposed rhizosphere trait-based method for 684 
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collected within the Hiraethlyn catchment in North Wales extract. Lines and associated r
2
 685 

values are linear regression fits to the experimental data. 686 

 687 



Table 1 

Mean concentration of P (mg kg
-1

) solubilised by 10 mM CaCl2, 10 mM citric acid, 0.02 

enzyme units of phosphatase and phytase enzymes, and 1.0 M HCl across 102 soil samples 

collected both in 1998 and 2007 in the UK Countryside Survey.  

Extract 1990 2009 Progression 

CaCl2  33 ± 6
a
 19 ± 3

b
 Decrease 

Citrate 285 ± 26
a
 188 ± 26

b
 Decrease 

Enzyme 130 ± 28
b
 291 ± 31

a
 Increase 

HCl 572 ± 40
a
 399 ± 34

b
 Decrease 

Total, sum of averages 903 ± 16 897 ± 15 No change 

Data represent means ± SEM, n = 102. Different letters following numeric means indicates 

significant (P < 0.05) change in P between 1990 and 2009. 
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Table 2 

Pearson correlation matrix for P solubilized using the Olsen bicarbonate method and the 4 

extractants used in the rhizosphere-based P fractionation procedure (10 mM CaCl2, 10 mM 

citric acid solution, 0.02 enzyme units of phosphatase and phytase enzymes, and 1.0 M HCl).  

Significance indicated by asterisks, * P < 0.01, ** P < 0.001 (n = 204). 

  Olsen  CaCl2  Citrate  Enzyme  HCl 

Olsen 1.000     

CaCl2 0.372** 1.000    

Citrate 0.563** 0.153 1.000   

Enzyme 0.145 0.143 0.169 1.000  

HCl 0.432** 0.013 0.732** 0.18* 1.000 
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Figure 3 
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Figure 4 
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