956 research outputs found
A Simple Model for Cavity Enhanced Slow Lights in Vertical Cavity Surface Emission Lasers
We develop a simple model for the slow lights in Vertical Cavity Surface
Emission Lasers (VCSELs), with the combination of cavity and population
pulsation effects. The dependences of probe signal power, injection bias
current and wavelength detuning for the group delays are demonstrated
numerically and experimentally. Up to 65 ps group delays and up to 10 GHz
modulation frequency can be achieved in the room temperature at the wavelength
of 1.3 m. The most significant feature of our VCSEL device is that the
length of active region is only several m long. Based on the experimental
parameters of quantum dot VCSEL structures, we show that the resonance effect
of laser cavity plays a significant role to enhance the group delays
The Evolution of Diffuse Radio Sources in Galaxy Clusters
We investigate the evolution and number distribution of radio halos in galaxy
clusters. Without re-acceleration or regeneration, the relativistic electrons
responsible for the diffuse radio emission will lose their energy via
inverse-Compton and synchrotron losses in a rather short time, and radio halos
will have lifetimes 0.1 Gyr. Radio halos could last for Gyr if a
significant level of re-acceleration is involved. The lifetimes of radio halos
would be comparable with the cosmological time if the radio-emitting electrons
are mainly the secondary electrons generated by pion decay following
proton-proton collisions between cosmic-ray protons and the thermal
intra-cluster medium within the galaxy clusters. Adopting both observational
and theoretical constraints for the formation of radio halos, we calculate the
formation rates and the comoving number density of radio halos in the
hierarchical clustering scheme. Comparing with observations, we find that the
lifetimes of radio halos are Gyr. Our results indicate that a
significant level of re-acceleration is necessary for the observed radio halos
and the secondary electrons may not be a dominant origin for radio halos.Comment: 22 pages, 6 figures, ApJ, in press (v2:Corrected typos.
Comparing the outcomes of two strategies for colorectal tumor detection: Policy-promoted screening program versus health promotion service
AbstractBackgroundThe Taiwanese government has proposed a population-based colorectal tumor detection program for the average-risk population. This study's objectives were to understand the outcomes of these screening policies and to evaluate the effectiveness of the program.MethodsWe compared two databases compiled in one medical center. The âpolicy-promoted cancer screeningâ (PPS) database was built on the basis of the policy of the Taiwan Bureau of National Health Insurance for cancer screening. The âhealth promotion serviceâ (HPS) database was built to provide health check-ups for self-paid volunteers. Both the PPS and HPS databases employ the immunochemical fecal occult blood test (iFOBT) and colonoscopy for colorectal tumor screening using different strategies. A comparison of outcomes between the PPS and HPS included: (1) quality indicatorsâcompliance rate, cecum reaching rate, and tumor detection rate; and (2) validity indicatorsâsensitivity, specificity, positive, and negative predictive values for detecting colorectal neoplasms.ResultsA total of 10,563 and 1481 individuals were enrolled in PPS and HPS, respectively. Among quality indicators, there was no statistically significant difference in the cecum reaching rate between PPS and HPS. The compliance rates were 56.1% for PPS and 91.8% for HPS (p < 0.001). The advanced adenoma detection rates of PPS and HPS were 1.0% and 3.6%, respectively (p < 0.01). The carcinoma detection rates were 0.3% and 0.4%, respectively (p = 0.59). For validity indicators, PPS provides only a positive predictive value for colorectal tumor detection. HPS provides additional validity indicators, including sensitivity, specificity, positive predictive value, and negative predictive value, for colorectal tumor screening.ConclusionIn comparison with the outcomes of the HPS database, the screening efficacy of the PPS database is even for detecting colorectal carcinoma but is limited in detecting advanced adenoma. HPS may provide comprehensive validity indicators and will be helpful in adjusting current policies for improving screening performance
Interferon-b Modulates Inflammatory Response in Cerebral Ischemia
BACKGROUND:
Stroke is a leading cause of death in the world. In >80% of strokes, the initial acute phase of ischemic injury is due to the occlusion of a blood vessel resulting in severe focal hypoperfusion, excitotoxicity, and oxidative damage. Interferon-β (IFNβ), a cytokine with immunomodulatory properties, was approved by the US Food and Drug Administration for the treatment of relapsing-remitting multiple sclerosis for more than a decade. Its anti-inflammatory properties and well-characterized safety profile suggest that IFNβ has therapeutic potential for the treatment of ischemic stroke.
METHODS AND RESULTS:
We investigated the therapeutic effect of IFNβ in the mouse model of transient middle cerebral artery occlusion/reperfusion. We found that IFNβ not only reduced infarct size in ischemic brains but also lessened neurological deficits in ischemic stroke animals. Further, multiple molecular mechanisms by which IFNβ modulates ischemic brain inflammation were identified. IFNβ reduced central nervous system infiltration of monocytes/macrophages, neutrophils, CD4(+) T cells, and γδ T cells; inhibited the production of inflammatory mediators; suppressed the expression of adhesion molecules on brain endothelial cells; and repressed microglia activation in the ischemic brain.
CONCLUSIONS:
Our results demonstrate that IFNβ exerts a protective effect against ischemic stroke through its anti-inflammatory properties and suggest that IFNβ is a potential therapeutic agent, targeting the reperfusion damage subsequent to the treatment with tissue plasminogen activator
Significant association of hematinic deficiencies and high blood homocysteine levels with burning mouth syndrome
Background/PurposeBurning mouth syndrome (BMS) is characterized by a burning sensation of the oral mucosa in the absence of clinically apparent mucosal alterations. In this study, we evaluated whether there was an intimate association of the deficiency of hemoglobin (Hb), iron, vitamin B12, or folic acid; high blood homocysteine level; and serum gastric parietal cell antibody (GPCA) positivity with BMS.MethodsBlood Hb, iron, vitamin B12, folic acid, and homocysteine concentrations and the serum GPCA level were measured in 399 BMS patients and compared with the corresponding levels in 399 age- and sex-matched healthy control individuals.ResultsWe found that 89 (22.3%), 81 (20.3%), 10 (2.5%), and six (1.5%) BMS patients had deficiencies of Hb (men: <13 g/dL, women: <12 g/dL), iron (<60 Οg/dL), vitamin B12 (<200 pg/mL), and folic acid (<4 ng/mL), respectively. Moreover, 89 (22.3%) BMS patients had abnormally high blood homocysteine level and 53 (13.3%) had serum GPCA positivity. BMS patients had a significantly higher frequency of Hb, iron, or vitamin B12 deficiency; of abnormally elevated blood homocysteine level; or of serum GPCA positivity than the healthy control group (all p < 0.001 except for vitamin B12 deficiency, for which p = 0.004). However, no significant difference in frequency of folic acid deficiency (p = 0.129) was found between BMS patients and healthy control individuals.ConclusionWe conclude that there is a significant association of deficiency of Hb, iron, and vitamin B12; abnormally high blood homocysteine level; and serum GPCA positivity with BMS
Exploring the heterogeneity of effects of corticosteroids on acute respiratory distress syndrome: a systematic review and meta-analysis
INTRODUCTION: The effectiveness of corticosteroid therapy on the mortality of acute respiratory distress syndrome (ARDS) remains under debate. We aimed to explore the grounds for the inconsistent results in previous studies and update the evidence. METHODS: We searched MEDLINE, Cochrane Central Register of Controlled Trials and Web of Science up to December 2013. Eligible studies included randomized clinical trials (RCTs) and cohort studies that reported mortality and that had corticosteroid nonusers for comparison. The effect of corticosteroids on ARDS mortality was assessed by relative risk (RR) and risk difference (RD) for ICU, hospital, and 60-day mortality using a random-effects model. RESULTS: Eight RCTs and 10 cohort studies were included for analysis. In RCTs, corticosteroids had a possible but statistically insignificant effect on ICU mortality (RD, â0.28; 95% confidence interval (CI), â0.53 to â0.03 and RR, 0.55; 95% CI, 0.24 to 1.25) but no effect on 60-day mortality (RD, â0.01; 95% CI, â0.12 to 0.10 and RR, 0.97; 95% CI, 0.75 to 1.26). In cohort studies, corticosteroids had no effect on ICU mortality (RR, 1.05; 95% CI, 0.74 to 1.49) but non-significantly increased 60-day mortality (RR, 1.30; 95% CI, 0.96 to 1.78). In the subgroup analysis by ARDS etiology, corticosteroids significantly increased mortality in influenza-related ARDS (three cohort studies, RR, 2.45, 95% CI, 1.40 to 4.27). CONCLUSIONS: The effects of corticosteroids on the mortality of ARDS differed by duration of outcome measures and etiologies. Corticosteroids did not improve longer-term outcomes and may cause harm in certain subgroups. Current data do not support routine use of corticosteroids in ARDS. More clinical trials are needed to specify the favorable and unfavorable subgroups for corticosteroid therapy
Prostaglandin E2 Inhibition of IL-27 Production in Murine Dendritic Cells: A Novel Mechanism That Involves IRF1
IL-27, a multifunctional cytokine produced by APCs, antagonizes inflammation by affecting conventional dendritic cells (cDC), inducing IL-10, and promoting development of regulatory Tr1 cells. Although the mechanisms involved in IL-27 induction are well studied, much less is known about the factors that negatively impact IL-27 expression. PGE2, a major immunomodulatory prostanoid, acts as a proinflammatory agent in several models of inflammatory/autoimmune disease, promoting primarily Th17 development and function. In this study, we report on a novel mechanism that promotes the proinflammatory function of PGE2 We showed previously that PGE2 inhibits IL-27 production in murine bone marrow-derived DCs. In this study, we show that, in addition to bone marrow-derived DCs, PGE2 inhibits IL-27 production in macrophages and in splenic cDC, and we identify a novel pathway consisting of signaling through EP2/EP4âinduction of cAMPâdownregulation of IFN regulatory factor 1 expression and binding to the p28 IFN-stimulated response element site. The inhibitory effect of PGE2 on p28 and irf1 expression does not involve endogenous IFN-β, STAT1, or STAT2, and inhibition of IL-27 does not appear to be mediated through PKA, exchange protein activated by cAMP, PI3K, or MAPKs. We observed similar inhibition of il27p28 expression in vivo in splenic DC following administration of dimethyl PGE2 in conjunction with LPS. Based on the anti-inflammatory role of IL-27 in cDC and through the generation of Tr1 cells, we propose that the PGE2-induced inhibition of IL-27 in activated cDC represents an important additional mechanism for its in vivo proinflammatory functions
Dithiolethione ACDT suppresses neuroinflammation and ameliorates disease severity in experimental autoimmune encephalomyelitis
Multiple sclerosis (MS) is an autoimmune disorder characterized by the central nervous system (CNS) infiltration of myelin-specific pathogenic T cells followed by brain inflammation in association with demyelination. Similarly, experimental autoimmune encephalomyelitis (EAE), the animal model of MS, also exhibits increased CNS infiltration of pathogenic T cells, including Th1 and Th17, leading to detrimental effects of neuroinflammation and demyelination. We previously reported that 3H-1,2-dithiole-3-thione (D3T), the structurally-simplest of the sulfur-containing dithiolethiones, exerted a promising therapeutic effect in EAE. In the current study we report that 5-Amino-3-thioxo-3H-(1,2)dithiole-4-carboxylic acid ethyl ester (ACDT), a substituted derivative of D3T, exhibits anti-inflammatory properties in EAE. ACDT, administered post immunization, delayed disease onset and reduced disease severity in chronic C57BL/6 EAE, and ACDT, administered during disease remission, suppressed disease relapse in relapsing-remitting SJL/J EAE. Further analysis of the cellular and molecular mechanisms underlying the protective effects of ACDT in EAE revealed that ACDT inhibited pathogenic T cell infiltration, suppressed microglia activation, repressed neurotoxic A1 astrocyte generation, lessened blood-brain barrier disruption, and diminished MMP3/9 production in the CNS of EAE. In summary, we demonstrate that ACDT suppresses neuroinflammation and ameliorates disease severity in EAE through multiple cellular mechanisms. Our findings suggest the potential of developing ACDT as a novel therapeutic agent for the treatment of MS/EAE
Isolation of Mouse Cerebral Microvasculature for Molecular and Single-Cell Analysis
Brain microvasculature forms a specialized structure, the blood-brain barrier (BBB), to maintain homeostasis and integrity of the central nervous system (CNS). The BBB dysfunction is emerging as a critical contributor to multiple neurological disorders, including stroke, traumatic brain injury, autoimmune multiple sclerosis, and neurodegenerative diseases. The brain microvasculature exhibits highly cellular and regional heterogeneity to accommodate dynamic changes of microenvironment during homeostasis and diseases. Thus, investigating the underlying mechanisms that contribute to molecular or cellular changes of the BBB is a significant challenge. Here, we describe an optimized protocol to purify microvessels from the mouse cerebral cortex using mechanical homogenization and density-gradient centrifugation, while maintaining the structural integrity and functional activity of the BBB. We show that the isolated microvessel fragments consist of BBB cell populations, including endothelial cells, astrocyte end-feet, pericytes, as well as tight junction proteins that seal endothelial cells. Furthermore, we describe the procedures to generate single-cell suspensions from isolated microvessel fragments. We demonstrate that cells in the single-cell suspensions are highly viable and suitable for single-cell RNA-sequencing analysis. This protocol does not require transgenic mice and cell sorting equipment to isolate fluorescence-labeled endothelial cells. The optimized procedures can be applied to different disease models to generate viable cells for single-cell analysis to uncover transcriptional or epigenetic landscapes of BBB component cells
- âŚ