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Abstract

IL-27, a multifunctional cytokine produced by antigen-presenting cells, antagonizes inflammation 

by affecting conventional dendritic cells (cDC), inducing IL-10, and promoting development of 

regulatory Tr1 cells. Although the mechanisms involved in IL-27 induction are well-studied, much 

less is known about the factors that negatively impact IL-27 expression. Prostaglandin E2 (PGE2), 

a major immunomodulatory prostanoid, acts as a pro-inflammatory agent in several models of 

inflammatory/autoimmune diseases, promoting primarily Th17 development and function. In this 

study, we report on a novel mechanism which promotes the pro-inflammatory function of PGE2. 

We showed previously that PGE2 inhibits IL-27 production in murine bone marrow derived DCs. 

Here, we show that, in addition to BMDCs, PGE2 inhibits IL-27 production in macrophages and 

in splenic cDC and we identify a novel pathway consisting of signaling through EP2/

EP4→induction of cAMP→downregulation of IRF1 expression and binding to the p28 ISRE site. 

The inhibitory effect of PGE2 on p28 and irf1 expression does not involve endogenous IFNβ, 

STAT1 or STAT2, and inhibition of IL-27 does not appear to be mediated through PKA, EPAC, 

PI3K, or MAPKs. We observed similar inhibition of il27p28 expression in vivo in splenic DC 

following administration of dimethyl PGE2 in conjunction with LPS. Based on the anti-

inflammatory role of IL-27 in cDC and through the generation of Tr1 cells, we propose that the 

PGE2-induced inhibition of IL-27 in activated cDC represents an important additional mechanism 

for its in vivo pro-inflammatory functions.
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Introduction

Interleukin-27 (IL-27), a cytokine that belongs to the IL-12 family, is a p28/EBI3 

heterodimer which signals through the IL-27Rα(WSX-1)/gp130 receptor (1, 2). The 

inclusion of IL-27 within the IL-12 cytokine family is based on the fact that the IL-27 

subunits EBI3 and p28 are related to IL-12p40 and IL-12p35, respectively. The homology 

extends to the IL-27/IL-12 receptors with IL-27Rα/WSX-1 being homologous to IL12Rβ2 

(3). Myeloid cells including dendritic cells (DC) are major IL-27 producers following 

activation through TLRs, CD40 and IFN type I and II receptors (3, 4). In a model using 

conditional IL27p28-deficient mice, CD11c+ DC were identified as the critical source of 

IL-27 (5). Expression of IL-27Rα is limited to immune cells, especially T and NK cells (2), 

with IL-27Rα increasing following T cell activation (6). Recently, cDCs were reported to 

express IL-27Rα at higher levels than plasmacytoid DC (7).

Although initial studies suggested a pro-inflammatory role for IL-27, models of infectious 

and autoimmune diseases in Il27ra deficient mice identified IL-27 as a negative regulator of 

T cell functions (3, 8). Both cDC and CD4 T cells are targets for IL-27-mediated negative 

regulation. Mascanfroni et al (7) reported recently that IL-27 signaling in cDC limits Th1 

and Th17 differentiation and function. In addition, IL-27 was also reported to induce the 

expansion and differentiation of Tr1 cells, one of the two major types of regulatory CD4 T 

cells (8, 9). The Foxp3-IL-10+IFNγ+ Tr1 cells secrete high levels of IL-10, and both Tr1 

differentiation and production of IL-10 are IL-27 dependent (10–13).

Although the induction of IL-27 production has been studied extensively, much less is 

known about mechanisms that limit IL-27 expression. Presently, only extracellular ATP 

acting on purinergic receptors and C5a acting through C5aR, were reported to inhibit IL-27 

production (14, 15).

PGE2, a major prostanoid derived from arachidonic acid, is produced by immune cells 

including cDC in response to pro-inflammatory stimuli and signals through four EP 

receptors (EP1-4) which vary in affinity, signal duration and signaling pathways (16–19). 

The role of PGE2 in DC maturation and function has been studied extensively. In immature 

DC, PGE2 accelerates maturation and promotes a pro-inflammatory phenotype (20–22). In 

terms of DC cytokines and chemokines, PGE2 was reported to reduce IL-12, TNFα, CCL3 

and CCL4 (23–25), while upregulating IL-23 and promoting Th17 function (26–30). The 

effects of PGE2 on Th1 differentiation depend on the experimental system. In the presence 

of APCs, PGE2 suppresses Th1 differentiation (23), whereas, when purified naïve CD4 T 

cells are differentiated in Th1 polarizing conditions, PGE2 promotes Th1 differentiation 

(31). This apparent discrepancy can be explained by the fact that, in the first system, PGE2 

inhibits the APC release of IL-12, a required Th1 differentiation factor, whereas in the 

second system which includes exogenous IL-12, PGE2 upregulates the expression of 

IL-12Rβ2 in differentiating Th1 cells (31). The pro-inflammatory role of PGE2 has been 

confirmed in vivo in models of contact hypersensitivity, inflammatory bowel disease, 

rheumatoid arthritis, and experimental autoimmune encephalomyelitis (EAE), and shown to 
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be mostly associated with increases in Th1/Th17 differentiation and/or function (18, 19, 32, 

33).

Here we report on a novel pro-inflammatory function of PGE2, mediated through the 

inhibition of IL-27 production by cDCs. To date, little is known about the interaction 

between PGE2 and IL-27. Two publications, including one from our laboratory, reported 

previously that PGE2 inhibited LPS-induced IL-27p28 expression in BMDC (34) and 

THP-1 cells (35). In the present study we report that PGE2 inhibits IL-27 expression in bone 

marrow-derived DC (BMDC) and macrophages (BMDM), and in splenic DCs in vitro and in 

vivo. The inhibitory effect of PGE2 is mediated through EP2/EP4 receptors, cAMP 

induction, and inhibition of IRF1 expression and binding to the p28 promoter ISRE site.

Materials and Methods

Mice

C57BL/6 (6–10 weeks old) and B6.129S2-Irf1tm1Mak (Irf1−/−) mice were purchased from 

Jackson Laboratory. 129S6/SvEv-Stat1tm1Rds (Stat1−/−) and wild type (WT) mice (129S6/

SvEv) were from Taconic Farms. C57BL/6 Stat2−/− and corresponding WT mice were 

provided by Dr. Ana Gamero (Temple University, Philadelphia, PA, USA). Mice were 

housed and maintained in accordance with protocols approved by IACUC at Temple 

University.

Reagents

Prostaglandin E2, LPS (Escherichia coli O55:B5), peptidoglycan (Staphylococcus aureus), 

poly I:C and DNase were purchased from Sigma-Aldrich. Granulocyte-macrophage colony-

stimulating factor, macrophage colony-stimulating factor and IFNγ were from Peprotech, 

Inc. Dimethyl-PGE2, butaprost, sulprostone, misoprostol, the specific activator of the 

exchange protein activated by cAMP (EPAC), 8-pCPT-2′-O-Me-cAMP (8-CPT), and the 

PI3K inhibitor LY294002 were purchased from Cayman Chemical. PKI (5–24) was 

purchased from Santa Cruz Biotechnology Inc. PKI (6–22), U0126, JNK inhibitor II, EP 

receptor antagonists PF-04418948 and ONO-AE3-208, and dibutyryl-cAMP were from 

Calbiochem. Capture and biotinylated anti-mouse IL-27p28 antibody and recombinant 

mouse IL-27p28 were from R&D Systems. Capture and biotinylated anti-mouse IFN-β 
antibodies were from BioLegend (ELISA detection limit of). Streptavidin-HRP was 

purchased from BioLegend. Tetramethylbenzidine substrate reagent set was from BD 

Biosciences. Anti-IRF1 and IgG control antibodies for ChIP were from Santa Cruz 

Biotechnology Inc. Primary anti-mouse antibodies for Western blot were from Cell 

Signaling Technology (IRF1), Abcam (GAPDH) and BD Biosciences (β-actin). IFN-β was 

purchased from PBL Assay Science. APC-conjugated anti-mouse CD11c and PE-Cy5-

conjugated anti-mouse MHCII antibodies were purchased from eBioscience. FITC-

conjugated anti-mouse CD80, CD86, and CD40 were purchased from BD Biosciences.

DC and macrophage culture

Primary DCs were derived from bone marrow cells as previously described (36). 

Macrophages were derived from bone marrow cells cultured in the presence of 10 ng/ml 
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macrophage colony-stimulating factor, and adherent cells were collected on day 7. Spleen 

DCs were isolated from spleens dissociated in the presence of 0.5 mg/ml liberase TL (Roche 

Diagnostics) and DNase, and magnetically sorted using CD11c MicroBeads per 

manufacturer’s instructions (Miltenyi Biotec). Purity was determined by FACS analysis 

(>93% CD11c+).

qRT-PCR

Gene expression analysis of il-10, Il12a(p35), Il12b(p40), Il23a(p19), ifnb, p28, irf1, β-actin 
and Gapdh was performed using SYBR-green based qRT-PCR. The following primer sets 

were used: Il10 sense 5′-CCTGGTAGAAGTGATGCCCC-3′ and antisense 5′-

TCCTTGATTTCTGGGCCATG-3′; Il12a(p35) sense 5′-

GAGGACTTGAAGATGTACAG-3′ and antisense 5′-TTCTATCTGT 

GTGAGGAGGGC-3′; Il12b(p40) sense 5′-GACCCTGCCGATTGAACTGGC-3′ and 

antisense 5′-CAACGTTGCATCCTAGGATCG-3′; Il23a(p19) sense 5′-TGCTGGATTGC 

AGAGCAGTAA-3′ and antisense 5′-ATGCAGAGATTCCGAGAGA-3′; ifnb sense 5′-

CCCTATGGAGATGACGGAGA-3′ and antisense 5′-ACCCAGTGCTGGAGAAATTG-3′, 

p28 (in vitro experiments) sense 5′-TCTGGTACAAGCTGGTTCCTGG-3′ and antisense 

5′-TAGCCCTGAACCT CAGAGAGCA-3′; p28 (in vivo studies) (37) forward 5′-

ATCTCGATTGCCAGGAGTGA-3′ and antisense 5′-

GTGGTAGCGAGGAAGCAGAGT-3′; irf1 sense 5′-CCCACAGAAGAG CATAGCAC-3′ 
and antisense 5′-AGCAGTTCTTTGGGAATAGG-3′; β-actin sense 5′-

AGCTTCTTTGCAGCTCCTTCGTTGC-3′ and antisense 5′-ACCAGCGCAGCGATATCG 

TCA-3′; Gapdh sense 5′-GGAGCGAGACCCCACTAA-3′ and antisense 5′-ACATACT 

CAGCACCGGCCTC-3′. Expression levels of each gene were calculated using relative 

standard curves and normalized to either β-actin or Gapdh.

Focused PCR-array

BMDCs were treated with LPS (1μg) with or without PGE2 (10−6M) for 90 min. mRNA 

was extracted and reverse transcribed using the RT2 First Strand kit. Expression levels of 

transcription factors were determined using the RT2 Profiler PCR Array Mouse 

Transcription Factors.

FACS analysis

Cells were treated as indicated and incubated at 4°C for 30 min with anti-mouse CD11c, 

CD80, CD86, CD40, MCHII or corresponding isotype controls. Cells were washed three 

times and collected using BD FACSCalibur. For all experiments, stained cell preparations 

were compared to isotype controls in order to identify and gate on positive cell populations. 

Data was analyzed using FlowJo (Ashland, OR) and GraphPad Prism 5.0.

Cytokine ELISA

Cytokine levels in cell culture supernatants were quantified by sandwich ELISA. Cells were 

plated in 12-well culture plates (1–2 × 106/ml) and stimulated for 24hr. Detection limit was 

5 pg/ml for IL-27 and 15 pg/ml for IFNβ.
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Western blot analysis

BMDCs (2–3 × 106) were serum starved for 4 hours prior to treatment with LPS and PGE2. 

Samples were lysed, denatured (95°C, 5 minutes) and loaded on 10% Bis-Tris gels. 

Following electrophoresis, protein was transferred to PVDF membranes (Bio-Rad) and 

probed overnight with primary antibodies. Membranes were washed, incubated with HRP 

goat anti-rabbit Ig (BD Biosciences) then detected using Immobilon Western 

chemiluminescent HRP substrate (Millipore). Membranes were then stripped and re-probed 

for β-actin.

Chromatin Immunoprecipitation Assay (ChIP)

BMDCs (1x107) were stimulated for 3–4hr then fixed with 1% formaldehyde for 15 

minutes. Cells were treated with 125 mM glycine for 5 min to stop fixation, washed twice 

with PBS containing protease inhibitors, lysed, sonicated using a sonic Dismembrator 

(Fisher Scientific) and processed as previously described (38). Precipitated DNA and 10% 

input was subjected to qPCR with primers specific to the ISRE site within the p28 promoter: 

sense 5′-GCTGAAAGTACAAGTAGGACAGAA-3′ and antisense 5′-AGCCATCTCCTGG 

GTAGG-3′. Results were analyzed using the ΔΔCT method.

In vivo experiment

C57BL/6 mice (n= 4–8 per group) were injected intraperitoneally with vehicle (0.4% DMSO 

in PBS) or dmPGE2 (200μg/kg) followed by a second injection 4hr later with vehicle or 

dmPGE2 in addition to LPS (10mg/kg). CD11c+ cells were purified from spleens 4hr after 

the second set of injections. mRNA was extracted and subjected to qRT-PCR for p28 
expression.

Statistical analysis

Results represent mean ± SD. Comparisons between groups were performed using unpaired 

t-test or one way ANOVA followed by Bonferroni correction. Statistical significance was 

determined with P<0.05 (*P<0.05, **P<0.01, and ***P<0.001). Graphs were generated and 

statistical analysis performed using GraphPad Prism 5.0.

Results

PGE2 inhibits IL-27 production in CD11c+ DC and macrophages

The effect of PGE2 on IL-27 production was first tested in BMDCs stimulated with various 

concentrations of LPS (0.1, 0.5 and 1 μg/ml). We observed a similar inhibition pattern with 

more than 50% inhibition of IL-27 by PGE2 10−6 to 10−8M. In subsequent experiments we 

used LPS at a concentration of 1 μg/ml unless otherwise noted. The PGE2 concentrations 

were chosen in agreement with the concentrations reported in vivo in inflammatory 

conditions (10−6–10−7M) (39–41). PGE2 reduced IL-27 production in a dose-dependent 

manner in both LPS- and LPS+IFNγ stimulated BMDCs (Fig. 1A). A similar inhibitory 

pattern was observed in BMDCs stimulated with peptidoglycan or poly I:C (Fig. 1B–C), 

indicating that PGE2 affects both MyD88 and TRIF signaling pathways. The inhibition of 

IL-27 by PGE2 is not restricted to BMDCs. We observed a similar inhibitory pattern in 
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splenic DCs (Fig. 1D) and in BMDM stimulated with LPS, LPS+IFNγ, and poly I:C (Fig. 

1E–F).

Since various TLR ligands induce endogenous PGE2, we tested the effect of endogenous 

PGE2 on IL-27 production in BMDCs treated with LPS in the presence or absence of the 

COX2 inhibitor NS-398. Although there was some variability from experiment to 

experiment, the levels of IL-27 were increased in the presence of NS-398 concentrations 

which abolished the generation of endogenous PGE2 (Fig. 1G). These results support a role 

for endogenous PGE2 in the reduction of IL-27 production.

PGE2 reduced mRNA expression levels of p28, but not ebi3, in both LPS- and LPS+IFNγ-

treated DCs (Fig. 2A) and in LPS-treated BMDM (Fig. 2B), indicating that the reduction in 

IL-27 is transcriptional through inhibition of p28 expression.

To determine if the effect of PGE2 on IL-27 was associated with a general reduction in DC 

activation, we assessed the effects of PGE2 on MHCII, co-stimulatory molecules and 

cytokine expression. PGE2 had minimal effects on surface MHCII, CD80 and CD86 

expression in DCs treated with LPS or LPS+IFNγ, with the only statistically significant 

decrease in the percentage of CD40+ cells (Fig. S1A) and CD40 MFI (230 with PGE2 

versus 390 without PGE2). As expected in terms of cytokine expression, PGE2 increased 

il-10 and il23a, and had a pronounced inhibitory effect on il12a and il12b expression (Fig. 

S1B).

PGE2 signals through EP2/EP4 and cAMP to reduce IL-27

To examine the role of EP receptors, BMDCs were treated with LPS in the presence of the 

receptor agonists butaprost (EP2), misoprostol (EP3, EP4>EP1), PGE1OH (EP4>EP3) and 

sulprostone (EP3>EP1). Butaprost, misoprostol and PGE1OH, but not sulprostone, inhibited 

IL-27 production (Fig. 3A), suggesting that EP1 and EP3 were not involved in the inhibition 

of IL-27. To confirm the role of EP2/EP4, DC were pretreated for 30 minutes with the 

selective receptor antagonists ONO-AE3-208 (EP4) and/or PF-04418948 (EP2), followed by 

treatment with LPS in the presence of PGE2. Addition of either antagonist had slight effects 

on the inhibition of IL-27, whereas addition of both EP2 and EP4 antagonists completely 

reversed the inhibitory effect of PGE2 (Fig. 3B), confirming the role of both EP2 and EP4.

Signaling through EP2 and EP4 is known to activate adenylate cyclase leading to increased 

levels of cAMP (42). To determine the involvement of cAMP in the inhibition of IL-27, we 

treated DCs with LPS in the presence of the stable, cell-permeable cAMP analog dibutyryl-

cAMP (dbcAMP). We found that dbcAMP mimicked the effects of PGE2 inhibiting IL-27 

production in a dose-dependent manner (Fig. 3C). Furthermore, addition of the adenylate 

cyclase activator forskolin also inhibited IL-27 production (Fig. 3D). These results indicate 

that PGE2 signals through cAMP to inhibit IL-27 production in LPS-stimulated DCs.

Increased intracellular cAMP levels lead to activation of a number of downstream signaling 

pathways, primarily through activation of EPAC and PKA (43, 44). To assess the 

involvement of EPAC, we treated DCs with LPS in the presence of the selective EPAC 

activator, 8-pCPT-2′-O-Me-cAMP (8-CPT). In contrast to PGE2, 8-CPT had no effect on 
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LPS-induced production of IL-27 (Fig. 4A). To determine the role of PKA signaling, we 

pretreated DCs with the PKA inhibitors PKI (6–22), PKI (5–24), or H89 followed by LPS 

with or without PGE2. The PKA inhibitors did not affect IL-27 production in LPS-

stimulated DCs, and did not reverse the inhibitory effect of PGE2 (Fig. 4B–C). These results 

strongly suggest that the inhibitory effect of PGE2 on IL-27, although cAMP-dependent, is 

not mediated through EPAC or PKA activation. We showed previously that PI3K activation 

mediated the inhibitory effect of PGE2 on CCL3/4 expression in DCs (45). However, PI3K 

does not appear to be involved in the inhibition of IL-27, since the PI3K inhibitor LY294002 

alone or in combination with PKI (6–22) did not reverse the inhibitory effect of PGE2 (Fig. 

4D). In terms of MAPK, none of the three major pathways (i.e. ERK1/2, JNK, and p38 

MAPK) appear to be involved, since use of ERK and JNK inhibitors did not reverse the 

PGE2 inhibitory effect on p28 expression (Fig. 4E), and we did not observe changes in p38 

MAPK phosphorylation upon treatment with PGE2 (results not shown).

Inhibition of IL-27 by PGE2 is mediated through effects on IRF1

Molle and colleagues (37) reported that IL-27p28 expression following TLR4 signaling is 

regulated at transcriptional level in two stages. The first stage (2–4 hours) is responsible for 

the initial p28 expression and involves MyD88-dependent IRF1 and IRF3 activation. The 

second stage, responsible for sustained p28 expression (6–12 hours), depends on IFNAR 

signaling leading to STAT1-dependent sustained IRF1 activation and formation of the ISGF3 

(STAT1/STAT2/IRF9) complex. Prior studies identified a proximal ISRE site within both 

human and mouse p28 promoters, and established that, in addition to the ISGF3 complex, 

both IRF1 and IRF3 act as essential p28 transactivating factors by binding to the ISRE site 

(Fig. 5A) (37, 46–50).

To identify transcription factors (TF) affected by PGE2 in LPS-stimulated DCs, we used an 

RT2 profiler PCR assay and compared early expression (90 minutes) of various TF in LPS-

stimulated DCs treated with or without PGE2. Seven genes were differentially expressed (at 

levels higher than 2-fold difference), including Irf1 which was downregulated by PGE2 

(Suppl. Table 1). Irf1 downregulation by PGE2 was confirmed by qRT-PCR (Fig. 5B), 

Western blot (Fig. 5C) and by flow cytometry (reduction from 71% IRF1+ cells in LPS-

treated DCs to 53% following PGE2 treatment, data not shown). In addition, dbcAMP had a 

similar inhibitory effect as PGE2 on IRF1 mRNA and protein expression (Fig. 5B–C).

We further investigated the possible involvement of IRF1 in the PGE2 inhibition of IL-27 by 

comparing WT and irf1−/− DCs. As expected from the reported role of IRF1 in IL-27p28 
expression, irf1−/− DCs expressed much lower levels of p28 mRNA than WT DCs. However, 

in contrast to WT DCs, the inhibitory effect of PGE2 was lost in irf1−/− DCs (Fig. 5D). 

Next, we used ChIP assays to determine the effect of PGE2 on IRF1 binding to the ISRE site 

within the mouse p28 promoter. Stimulation with LPS led to IRF1 binding to the ISRE site, 

and PGE2 and dbcAMP significantly reduced IRF1 binding (Fig. 5E). These results support 

IRF1 as a major mediator in the PGE2 inhibition of LPS-induced IL-27 expression. The fact 

that both PGE2 and dbcAMP have similar inhibitory effects on IL-27 production and on 

IRF1 binding to the p28 ISRE site supports the role of cAMP as mediator of the inhibitory 

effect of PGE2 on IL-27 production.
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Inhibition of IL-27 and IRF1 by PGE2 is not mediated through effects on STAT1 or STAT2

In DCs, p28 expression has been shown to require the sequential recruitment of IRF1, IRF3 

and ISGF3 to the endogenous promoter region (37). STAT1 and STAT2 are essential 

components of ISGF3 and participate in IRF1 expression (51–53). Therefore, we 

investigated whether the inhibitory effect of PGE2 on IL-27 is mediated through effects on 

STAT1 and/or STAT2. We first assessed the effects of PGE2 on STAT1 Tyr701 

phosphorylation in LPS-treated DCs by Western blotting and flow cytometry. The results 

were inconsistent, with slight or no reductions in phosphorylated STAT1. Next, we 

addressed the role of STAT1/STAT2 by testing the effects of PGE2 in STAT1- and STAT2-

deficient DCs. While WT DCs produced IL-27 in response to LPS and significantly 

increased IL-27 production upon LPS+IFNγ treatment, Stat1−/− DCs produced much lower 

levels of IL-27 (more than 90% reduction) and lost the ability to respond to IFNγ. However, 

PGE2 retained its inhibitory activity for IL-27 (Fig. 6A). In terms of irf1 expression, Stat1−/− 

DCs were unable to increase irf1 expression in response to IFNγ, but similar to the IL-27 

data, PGE2 reduced irf1 in both WT and Stat1−/− DCs (Fig. 6B). These results strongly 

suggest that PGE2 inhibition of IL-27 and downregulation of irf1 expression are STAT1-

independent.

Stat2−/− DCs maintained their capacity to respond to IFNγ, although IL-27 production was 

reduced for both LPS and LPS+IFNγ treatment as compared to WT DCs (Fig. 6C). PGE2 

retained its inhibitory capacity in the Stat2−/− DCs (Fig. 6C), and this was associated with a 

reduction in irf1 expression (Fig. 6D), suggesting that, similar to STAT1, the effects of PGE2 

on IL-27 and IRF1 are STAT2-independent

Reduction in endogenous IFNβ by PGE2 plays a minor role in the inhibition of IL-27

Upon stimulation with LPS, DCs produce both IL-27 and IFNβ. Subsequently, IFNβ 
signaling through IFNAR results in the formation of the ISGF3 complex and sustained p28 
expression (37). PGE2 suppresses IFNβ production in macrophages (54). In DC, LPS led to 

expression of both ifnb and p28 with peaks at 1 and 3h, respectively. PGE2 completely 

reduced p28 expression and IL-27 production, while ifnb expression and protein production 

were only partially reduced (Fig. 7A). To ascertain whether inhibition of IL-27 by PGE2 

results from a reduction in DC-derived IFNβ, we supplemented the cultures with exogenous 

IFNβ. PGE2 retained most of its inhibitory activity (>80% for PGE 10−6M, and 50% for 

10−8M) (Fig. 7B). We observed a similar pattern in irf1 expression, with PGE2 still reducing 

irf1 expression in DC treated with LPS in the presence of exogenous IFNβ (Fig. 7C).

PGE2 reduces in vivo IL-27 expression in splenic DC

To determine whether PGE2 affects in vivo IL-27 production in splenic CD11c+ DC, we 

analyzed p28 expression in mice inoculated with LPS and PGE2. The control group was 

injected intraperitoneally with vehicle, whereas experimental groups received dmPGE2 

(stable PGE2 analog), LPS, or LPS+dmPGE2 (Fig. 8A). Splenic CD11c+ cells were 

collected four hours later and p28 expression was analyzed by qRT-PCR. DCs from vehicle- 

and dmPGE2-treated mice did not express p28 mRNA. LPS administration resulted in an 

increase in p28 expression compared to the vehicle control, and co-administration of 

dmPGE2 reduced p28 expression (Fig. 8B).
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Discussion

Recently, the regulatory function of IL-27 in both innate and adaptive immunity and its 

crucial role in the generation of Tr1 cells, received a lot of attention (3, 8, 55). Although the 

mechanisms involved in the induction of IL-27 in cDCs and macrophages have been studied 

extensively, little is known about factors and mechanisms that negatively impact IL-27 

expression. We were the first to report that PGE2 inhibited IL-27 production by BMDCs 

(56), and a later publication reported on a similar finding in THP-1 cells (35). Here we 

report that PGE2 inhibits IL-27 production and p28 expression through a novel mechanism 

involving EP2/EP4-mediated cAMP increase, subsequent inhibition of irf1 expression and 

reduced IRF1 binding to the p28 promoter ISRE site. We also observed a similar reduction 

in p28 expression in vivo in splenic CD11c+ DCs following inoculation of dmPGE2 in 

conjunction with LPS.

In vivo, PGE2 has been described as a pro-inflammatory agent in models of contact 

hypersensitivity, inflammatory bowel disease, rheumatoid arthritis and EAE, primarily 

through EP4 signaling leading to Th1/Th17 differentiation (27, 31, 34, 56–59). In vitro pro-

inflammatory effects of PGE2 include DC and CD4 T cells. PGE2 contributes to DC 

maturation and promotes migration to draining lymph nodes (20, 36, 60). PGE2 also 

stimulates IL-23 production in DCs and upregulates IL-23R in T cells, promoting the 

generation of pathogenic Th17 cells (22, 26–29, 61). Although previous reports indicated 

that PGE2 favors Th2 at the expense of Th1 differentiation primarily through its inhibitory 

effect on IL-12 production in APCs (23, 62), PGE2 was reported to also facilitate Th1 

differentiation in polarizing conditions which include addition of exogenous IL-12 through 

the upregulation of IL-12Rβ2 and IFNγR1 in the differentiating naïve T cells (31).

In contrast to the effects on Th1, Th2, and Th17 differentiation, the PGE2 effects on 

regulatory T cells are less studied, with reports suggesting differences between tumor versus 

non-tumor microenvironments. Tumor-derived COX2/PGE2 was shown to promote 

Foxp3+Treg and Foxp3-Tr1 cells in cancer (63–67). In contrast, PGE2 inhibits the 

differentiation of non-tumor murine Foxp3+Treg and of CD46-induced Tr1 cells (68, 69).

IL-27, expressed and secreted by activated cDCs, was identified as the essential Tr1 

differentiation and growth factor, and shown recently to also affect cDC function (7, 70–72). 

In DCs, IL-27 reduced costimulatory molecules, IL-12, IL-6 and IL-23, and inhibited DC 

capacity to generate Th1/Th17 cells (7). In addition, adoptive transfer of IL-27-treated DC 

reduced EAE and suppressed recall responses of Th1 and Th17 cells (7). In CD4 T cells, 

IL-27 promoted both Tr1 differentiation and IL-10 production through STAT1/STAT3-

mediated upregulation of c-Maf, AhR, and Egr2→Blimp1 (73, 74).

Previously, we reported that PGE2 inhibited IL-27 expression in BMDCs (34), and Zhu et al 

(35) reported similar results in THP-1 cells. Here we report that PGE2 inhibition of IL-27 is 

similar in BMDCs, BMDMs, and splenic DCs, and that it occurs upon activation of various 

TLRs. Both EP2 and EP4 receptors, previously identified in DCs and shown to mediate most 

PGE2 effects in immune cells, were involved (25, 75, 76). The role of cAMP was confirmed 

by similar inhibitory effects of PGE2, dbcAMP and forskolin. However, neither EPAC nor 

Hooper et al. Page 9

J Immunol. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PKA appeared to be involved. The lack of effect of PKA, PI3K, MAPK and JNK inhibitors 

and the lack of effect of PGE2 on p38 phosphorylation, suggests that none of these signaling 

pathways play an essential role in the PGE2-induced inhibition of IL-27.

Upon analyzing mRNA expression of IL-27 subunits we found that PGE2 inhibited p28, but 

not Ebi3. Expression of mouse p28 is partially dependent on c-Rel binding to the distal NF-

κB site. However, binding of IRF1 to the proximal ISRE site represents the essential event 

for both human and mouse p28 expression (46–49). A temporal analysis of LPS-induced 

p28 expression showed that the initial burst in p28 transcription requires IRF1 and IRF3, 

with rapid nuclear translocation of IRF1 being MyD88-dependent (37). This is followed by 

TRIF/IRF3-mediated production of IFNβ which then upregulates and sustains STAT1-

dependent IRF1 expression, and activates the ISGF3 complex (STAT1/STAT2/IRF9). The 

latter events serve to sustain p28 expression (37).

We investigated whether PGE2 inhibits IL-27 through effects on IFNβ, IRF1, IRF3, STAT1 

and/or STAT2. The effect of PGE2 does not appear to be mediated through reduction in 

IFNβ. Although we observed PGE2 inhibition of endogenous IFNβ, it was only partial 

(approx. 50%) as compared to >90% inhibition of IL-27. Moreover, the inhibitory effect of 

PGE2 was maintained in the presence of exogenous IFNβ (at concentrations equivalent to, 

or higher than the endogenous levels observed in the absence of PGE2).

We identified IRF1 as the most important contributor to the effect of PGE2 on p28 
expression. In DCs stimulated with LPS and treated with PGE2, PGE2 inhibited irf1 
expression as early as two hours. A significant reduction in intracellular IRF1 protein was 

also observed by Western blot. In agreement with the crucial role of IRF1 in p28 expression, 

LPS-treated irf1−/− DC expressed low levels of p28. Moreover, PGE2 lost its suppressive 

activity for p28 expression in irf1−/− DCs, suggesting that the inhibitory effect was mediated 

primarily through reduction in IRF1. This was also supported by ChIP analysis, where PGE2 

abolished LPS-induced IRF1 binding to the p28 ISRE site. Although STAT1 represents a 

major factor in the induction of IRF1, it does not play a role in the inhibitory effect of PGE2. 

In Stat1−/− DCs although IL-27 production was reduced, PGE2 still inhibited IL-27 and irf1 
expression. Stat2−/− DCs expressed irf1 at higher levels than WT DCs, presumably due to an 

increase in STAT1 dimers, but again PGE2 was able to inhibit both IL-27 production and 

irf1 expression. These results suggest that the PGE2 inhibition of IRF1 and subsequently of 

p28 expression is not mediated through STAT1 or STAT2.

Most of the effects of PGE2 on immune cells are mediated through induction of cAMP (77, 

78). Not surprisingly, we found that, similar to PGE2, dbcAMP and forskolin inhibited 

IL-27 production in cDCs. What was surprising however, was the lack of involvement of 

either PKA or EPAC, the classical signaling molecules downstream of cAMP. We 

established a link between cAMP and IRF1 by showing that similar to PGE2, dbcAMP 

inhibits irf1 expression, reduces the levels of intracellular IRF1 protein, and inhibits IRF1 

binding to the ISRE site in the p28 promoter. The involvement of cAMP in IRF1 inhibition 

has been previously reported for two other cAMP inducing agents, e.g. cholera toxin and 

Bordetella pertussis, without identifying the intermediary signaling molecules (79, 80). We 

were able to eliminate a number of possible intermediaries such as PKA, EPAC, PI3K, 

Hooper et al. Page 10

J Immunol. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MAPKs, STAT1 and STAT2. However, at the present time, the link between cAMP and 

IRF1 in the inhibition of IL-27 by PGE2 in cDC remains to be identified.

The relevance of our findings is reinforced by the fact that we observed similar inhibition of 

IL-27 in splenic DCs in vitro and in vivo following treatment with exogenous PGE2. In 

terms of the role of endogenous PGE2, the increase in IL-27 production in cDC stimulated 

with LPS in the presence of a selective COX2 inhibitor points to a role similar to the 

exogenous PGE2. This remains to be confirmed in vivo. Since the microsomal PGE2 

synthase mPGES1 is the major contributor for the specific generation of inducible PGE2, 

mPGES1 deficient mice (58) are the most attractive target for investigating the role of 

endogenous PGE2 in modulating the IL-27 response. However, a more recent report 

cautions against the assumption that the genetic global deletion of mPGES1 would affect 

solely PGE2, since mPGES1−/− DC exhibit preferential shunting towards PGD2 production 

(81). Therefore, the development and use of a conditional temporal mPGES1 KO might be a 

better option.

In conclusion, our results indicate that PGE2 inhibits IL-27 production in TLR-activated 

cDC by reducing p28 expression through the EP2/EP4→cAMP→IRF1 pathway. The 

inhibition occurs also in the presence of type I and II IFNs, suggesting that the reduction in 

endogenous IFNβ is not a major contributing factor. In contrast, inhibition of IRF1 mRNA 

and protein expression and of IRF1 binding to the p28 ISRE site plays a major role in the 

PGE2 inhibition of IL-27. In an inflammatory milieu, early release of PGE2 due to the 

activation of inducible COX2 and mPGES1 could be a determining factor in promoting 

acute inflammation. Among the variety of PGE2-related physiological effects, inhibition of 

IL-27 in APCs could contribute to a reduction in the differentiation and possibly activation 

of Tr1 cells, and act as an additional proinflammatory mechanism.
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Abbreviations

8-CPT 8-pCPT-2′-O-Me-cAMP (EPAC activator)

BMDC bone marrow-derived dendritic cells

BMDM bone marrow-derived macrophages

ChIP chromatin immunoprecipitation

COX2 cyclooxygenase 2

dbcAMP dibutyryl-cAMP
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EPAC exchange protein activated by cAMP

IRF interferon regulatory factor

ISGF3 interferon-stimulated gene factor 3

ISRE interferon-stimulated response element

PGE2 prostaglandin E2
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Figure 1. PGE2 inhibits IL-27 production in CD11c+ DC and macrophages
BMDC were stimulated with (A) LPS (TLR4; 100 ng/ml) or LPS+IFNγ (500 U/ml), (B) 

peptidoglycan (PGN, TLR2; 20 or 40 μg/ml), or (C) poly I:C (TLR3; 50 or 100 μg/ml) in the 

presence or absence of PGE2 for 24hr. One representative experiment of three is shown. (D) 

CD11c+ cells were isolated from the spleens of naïve C57BL/6 mice, plated for 1h, and 

stimulated with LPS (1 μg/ml) and PGE2 for 24hr. BMDM were stimulated with (E) LPS (1 

μg/ml) or LPS+IFNγ (500U/ml), or (F) poly I:C (50 or 100 μg/ml), in the presence or 

absence of PGE2 for 24h. One representative experiment of three is shown. Supernatants 

were collected and analyzed by ELISA for IL-27. (G) BMDC were pretreated with NS-398 

(10−5M, 10−6M) for 30 min, then stimulated with LPS (1μg/ml). Supernatants were 

collected at 24hr and analyzed by ELISA for IL-27 or PGE2. Each sample was tested in 

duplicate and results represent means ± SD. Statistics were calculated using one way 

ANOVA followed by Bonferroni correction; **P<0.01 and ***P<0.001.
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Figure 2. PGE2 inhibits IL-27p28 expression in DC and macrophages
BMDC (A) and BMDM (B) were stimulated with LPS or LPS+IFNγ in the presence or 

absence of PGE2 for 6hr. p28 and ebi3 expression was determined by qRT-PCR. One 

representative experiment of three is shown. Results represent means ± SD. Statistics were 

calculated using one way ANOVA followed by Bonferroni correction; *P<0.05, **P<0.01 
and ***P<0.001.
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Figure 3. PGE2 signals through EP2/EP4 and cAMP to inhibit IL-27 production
(A) BMDC were stimulated with LPS in the presence or absence of PGE2, butaprost, 

misoprostol, PGE1OH and sulprostone (10−5M). (B) BMDC were pretreated for 30 min with 

selective receptor antagonists, ONO-AE3-208 (EP4) and/or PF-04418948 (EP2) (10−6M), 

followed by stimulation with LPS in the presence of 10−7M PGE2. (C) BMDC were 

stimulated with LPS and dbcAMP. (D) BMDC were stimulated with LPS and forskolin. 

Supernatants were collected at 24hr and analyzed by ELISA for IL-27. One representative 
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experiment of three is shown. Results represent means ± SD. Statistics were calculated using 

one way ANOVA followed by Bonferroni correction; ***P<0.001.
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Figure 4. Inhibition of IL-27 by PGE2 is not mediated through EPAC, PKA, PI3K, or MAPK 
pathways
(A) BMDCs were stimulated with LPS in the absence or presence of the selective EPAC 

activator 8-CPT for 24hr. One of two independent experiments is shown. BMDCs were 

pretreated for 3hr with the PKA inhibitors PKI (5–24) or H89 (B), or PKI (6–22) (C) 

followed by LPS or LPS+PGE2 (10−7M) for 24hr. One of two independent experiments is 

shown. (D) BMDCs were pretreated for 30 min with the PKA inhibitor PKI (6–22), the 

PI3K inhibitor LY294002 (LY) or both, followed by LPS or LPS+PGE2 for 24hr. 

Supernatants were collected and subjected to IL-27 ELISA. One of two independent 

experiments is shown. (E) BMDCs were pretreated for 1h with the PI3K inhibitor LY294002 

(LY), ERK1/2 inhibitor U0126, or JNK inhibitor II (JNK II), followed by stimulation with 

LPS or LPS+PGE2 for 3hr. p28 expression was determined by qRT-PCR. One of three 

independent experiments is shown. Results represent means ± SD. Statistics were calculated 

using one way ANOVA followed by Bonferroni correction; **P<0.01 and ***P<0.001.
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Figure 5. Effects of PGE2 on IRF1
(A) Schematic of the murine p28 promotor with NF-κB and ISRE sites. (B) BMDC were 

stimulated with LPS in the presence of either PGE2 (10−6M) or dbcAMP (10−4M) for 2hr. 

Irf1 and p28 expression was determined by qRT-PCR. One of two independent experiments 

is shown. (C) BMDC were treated with LPS with or without PGE2 or dbcAMP for 3hr. Total 

cell lysates were collected and analyzed by Western blot for IRF1 and β-actin. One Western 

blot scan from three independent experiments is shown, with cumulative densitometry 

analysis below. (D) BMDC from WT and Irf1−/− were stimulated with LPS with or without 

PGE2 for 3hr and analyzed by qRT-PCR for p28. One representative experiment of two is 

shown. (E) BMDC were stimulated with LPS in the presence or absence of PGE2 or 

dbcAMP for the indicated times. Cells were fixed, lysed, sonicated and subjected to ChIP 

utilizing anti-IRF1 (black bars) and control IgG (white bars). Precipitated DNA was purified 

and analyzed by qPCR using primers specific for the ISRE site within the p28 promoter. One 

of three independent experiments is shown. Results represent means ± SD. Statistics were 

calculated using one way ANOVA followed by Bonferroni correction; ***P<0.001.
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Figure 6. The inhibitory effect of PGE2 on IL-27 and irf1 expression is not mediated through 
STAT1/STAT2
BMDC from WT 129S6 mice and Stat1−/− mice (A) or WT C57BL/6 mice and Stat2−/− 

mice (C) were stimulated with LPS or LPS+IFNγ in the presence or absence of PGE2 for 

24hr. Supernatants were collected and subjected to IL-27 ELISA. ELISA data are 

representative of two independent experiments for Stat1−/− data and three independent 

experiments for Stat2−/− data. BMDC from WT 129S6 mice and Stat1−/− mice (B) or WT 

C57BL/6 mice and Stat2−/− mice (D) were stimulated with LPS or LPS+IFNγ in the 

presence or absence of PGE2 for 1h. Irf1 expression was determined by qRT-PCR. One of 

two independent experiments is shown. Results represent means ± SD. Statistics were 

calculated using one way ANOVA followed by Bonferroni correction (A, C) or unpaired t-

test (B, D); *P<0.05, **P<0.01 and ***P<0.001.
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Figure 7. Inhibition of IL-27 by PGE2 is not mediated by the reduction in endogenous IFNβ
(A) BMDCs were stimulated with LPS with or without PGE2 for 1, 3, 6 and 8hr to analyze 

p28 and ifnb expression levels by qRT-PCR or for 3, 6 and 24hr to analyze IL-27 and IFNβ 
protein levels by ELISA. One of two independent experiments is shown. (B) BMDCs were 

treated with either LPS or LPS+IFN-β (1000U/ml) in the presence or absence of PGE2 

(10−6M, 10−8M) for 24h. Supernatants were analyzed by IL-27 ELISA. Results are 

presented as percent inhibition compared to no PGE2 controls. One of four independent 

experiments is shown. (C) BMDCs were treated with either LPS or IFNβ in the presence or 

absence of PGE2 for 1h. Irf1 expression was determined by qRT-PCR. One of two 

independent experiments is shown. Results represent means ± SD. Statistics were calculated 

using one way ANOVA followed by Bonferroni correction; *P<0.05, **P<0.01 and 

***P<0.001.
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Figure 8. In vivo effects of PGE2 on splenic DC p28 expression
(A) Schematic of experimental timeline and groups. (B) C57BL/6 mice (n=4–8) were 

injected intraperitoneally with vehicle (0.4% DMSO in PBS) or dmPGE2 (0.2mg/kg) twice 

at 4hr interval. LPS (10mg/kg) was given intraperitoneally to groups 3 and 4 with the second 

vehicle or dmPGE2 inoculation. CD11c+ cells were purified from the spleen 4hr after the 

second set of injections. Expression of p28 was analyzed by qRT-PCR. Graph represents 

cumulative data from three experiments. Statistics were calculated using one way ANOVA 

followed by Bonferroni correction; **P<0.01.
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