3,131 research outputs found

    Low thrust interplanetary trajectory open loop error analysis, volume 1 Final report

    Get PDF
    Computer program for open-loop error analysis of low thrust interplanetary trajectorie

    Nonlinear and adaptive estimation techniques in reentry

    Get PDF
    The development and testing of nonlinear and adaptive estimators for reentry (e.g. space shuttle) navigation and model parameter estimation or identification are reported. Of particular interest is the identifcation of vehicle lift and drag characteristics in real time. Several nonlinear filters were developed and simulated. Adaptive filters for the real time identification of vehicle lift and drag characteristics, and unmodelable acceleration, were also developed and tested by simulation. The simulations feature an uncertain system environment with rather arbitrary model errors, thus providing a definitive test of estimator performance. It was found that nonlinear effects are indeed significant in reentry trajectory estimation and a nonlinear filter is demonstrated which successfully tracks through nonlinearities without degrading the information content of the data. Under the same conditions the usual extended Kalman filter diverges and is useless. The J-adaptive filter is shown to successfully track errors in the modeled vehicle lift and drag characteristics. The same filter concept is also shown to track successfully through rather arbitrary model errors, including lift and drag errors, vehicle mass errors, atmospheric density errors, and wind gust errors

    Tunable Charge and Spin Seebeck Effects in Magnetic Molecular Junctions

    Full text link
    We study the charge and spin Seebeck effects in a spin-1 molecular junction as a function of temperature (T), applied magnetic field (H), and magnetic anisotropy (D) using Wilson's numerical renormalization group. A hard-axis magnetic anisotropy produces a large enhancement of the charge Seebeck coefficient Sc (\sim k_B/|e|) whose value only depends on the residual interaction between quasiparticles in the low temperature Fermi-liquid regime. In the underscreened spin-1 Kondo regime, the high sensitivity of the system to magnetic fields makes it possible to observe a sizable value for the spin Seebeck coefficient even for magnetic fields much smaller than the Kondo temperature. Similar effects can be obtain in C60 junctions where the control parameter is the gap between a singlet and a triplet molecular state.Comment: 5 pages, 4 figure

    Partially suppressed long-range order in the Bose-Einstein condensation of polaritons

    Full text link
    We adopt a kinetic theory of polariton non-equilibrium Bose-Einstein condensation, to describe the formation of off-diagonal long-range order. The theory accounts properly for the dominant role of quantum fluctuations in the condensate. In realistic situations with optical excitation at high energy, it predicts a significant depletion of the condensate caused by long-wavelength fluctuations. As a consequence, the one-body density matrix in space displays a partially suppressed long-range order and a pronounced dependence on the finite size of the system

    Phase diagram of the one dimensional anisotropic Kondo-necklace model

    Full text link
    The one dimensional anisotropic Kondo-necklace model has been studied by several methods. It is shown that a mean field approach fails to gain the correct phase diagram for the Ising type anisotropy. We then applied the spin wave theory which is justified for the anisotropic case. We have derived the phase diagram between the antiferromagnetic long range order and the Kondo singlet phases. We have found that the exchange interaction (J) between the itinerant spins and local ones enhances the quantum fluctuations around the classical long range antiferromagnetic order and finally destroy the ordered phase at the critical value, J_c. Moreover, our results show that the onset of anisotropy in the XY term of the itinerant interactions develops the antiferromagnetic order for J<J_c. This is in agreement with the qualitative feature which we expect from the symmetry of the anisotropic XY interaction. We have justified our results by the numerical Lanczos method where the structure factor at the antiferromagnetic wave vector diverges as the size of system goes to infinity.Comment: 9 pages and 9 eps figure

    Single-particle and collective excitations in a charged Bose gas at finite temperature

    Full text link
    The main focus of this work is on the predictions made by the dielectric formalism in regard to the relationship between single-particle and collective excitation spectra in a gas of point-like charged bosons at finite temperature TT below the critical region of Bose-Einstein condensation. Illustrative numerical results at weak coupling (rs=1r_s = 1) are presented within the Random Phase Approximation. We show that within this approach the single-particle spectrum forms a continuum extending from the transverse to the longitudinal plasma mode frequency and leading to a double-peak structure as TT increases, whereas the density fluctuation spectrum consists of a single broadening peak. We also discuss the momentum distribution and the superfluidity of the gas.Comment: 15 pages, 5 figure

    Boson-fermion model beyond mean-field approximation

    Get PDF
    A model of hybridized bosons and fermions is studied beyond the mean field approximation. The divergent boson self-energy at zero temperature makes the Cooper pairing of fermions impossible.The frequency and momentum dependence of the self- energy and the condensation temperature TcT_{c} of initially localized bosons are calculated analytically. The value of the boson condensation temperature TcT_{c} is below 1K1K which rules out the boson-fermion model with the initially localized bosons as a phenomenological explanation of high-temperature superconductivity. The intra-cell density-density fermion-boson interaction dominates in the fermion self-energy. The model represents a normal metal with strongly damped bosonic excitations. The latter play the role of normal impurities.Comment: 16 pages, Latex, 5 figures available upon reques

    Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: Zero magnetic field

    Full text link
    We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices and in the quantum computation, it is quite interesting and important to explore the electronic, optical, and transport phenomena in such systems

    Nonlinear screening of charge impurities in graphene

    Get PDF
    It is shown that a ``vacuum polarization'' induced by Coulomb potential in graphene leads to a strong suppression of electric charges even for undoped case (no charge carriers). A standard linear response theory is therefore not applicable to describe the screening of charge impurities in graphene. In particular, it overestimates essentially the contributions of charge impurities into the resistivity of graphene.Comment: 3 pages, 1 figure; final version as published in the journa

    Dynamic spin response of a strongly interacting Fermi gas

    Full text link
    We present an experimental investigation of the dynamic spin response of a strongly interacting Fermi gas using Bragg spectroscopy. By varying the detuning of the Bragg lasers, we show that it is possible to measure the response in the spin and density channels separately. At low Bragg energies, the spin response is suppressed due to pairing, whereas the density response is enhanced. These experiments provide the first independent measurements of the spin-parallel and spin-antiparallel dynamic and static structure factors and open the way to a complete study of the structure factors at any momentum. At high momentum the spin-antiparallel dynamic structure factor displays a universal high frequency tail, proportional to ω5/2\omega^{-5/2}, where ω\hbar \omega is the probe energy.Comment: Replaced with final versio
    corecore