202 research outputs found

    Parallel formation of differently sized groups in a robotic swarm

    Get PDF
    Swarm robotics is a branch of collective robotics focused on the study of relatively large groups of robots with limited sensing and communication capabilities. One of the main benefits of such systems is their potential for parallelism. To achieve parallelism in real-world scenarios, it is important to be able to split the swarm into appropriately sized groups for different concurrent tasks

    Exponential distribution of long heart beat intervals during atrial fibrillation and their relevance for white noise behaviour in power spectrum

    Full text link
    The statistical properties of heart beat intervals of 130 long-term surface electrocardiogram recordings during atrial fibrillation (AF) are investigated. We find that the distribution of interbeat intervals exhibits a characteristic exponential tail, which is absent during sinus rhythm, as tested in a corresponding control study with 72 healthy persons. The rate of the exponential decay lies in the range 3-12 Hz and shows diurnal variations. It equals, up to statistical uncertainties, the level of the previously uncovered white noise part in the power spectrum, which is also characteristic for AF. The overall statistical features can be described by decomposing the intervals into two statistically independent times, where the first one is associated with a correlated process with 1/f noise characteristics, while the second one belongs to an uncorrelated process and is responsible for the exponential tail. It is suggested to use the rate of the exponential decay as a further parameter for a better classification of AF and for the medical diagnosis. The relevance of the findings with respect to a general understanding of AF is pointed out

    Social odometry in populations of autonomous robots

    Get PDF
    Abstract. The improvement of odometry systems in collective robotics remains an important challenge for several applications. In this work, we propose a localisation strategy in which robots have no access to centralised information. Each robot has an estimate of its own location and an associated confidence level that decreases with distance travelled. Robots use estimates advertised by neighbouring robots to correct their own location estimates at each time-step. This simple online social form of odometry is shown to allow a group of robots to both increase the quality of individuals' estimates and efficiently improve their collective performance. Furthermore, social odometry produces a successful selforganised collective pattern

    A Fisher-Rao metric for paracatadioptric images of lines

    Get PDF
    In a central paracatadioptric imaging system a perspective camera takes an image of a scene reflected in a paraboloidal mirror. A 360° field of view is obtained, but the image is severely distorted. In particular, straight lines in the scene project to circles in the image. These distortions make it diffcult to detect projected lines using standard image processing algorithms. The distortions are removed using a Fisher-Rao metric which is defined on the space of projected lines in the paracatadioptric image. The space of projected lines is divided into subsets such that on each subset the Fisher-Rao metric is closely approximated by the Euclidean metric. Each subset is sampled at the vertices of a square grid and values are assigned to the sampled points using an adaptation of the trace transform. The result is a set of digital images to which standard image processing algorithms can be applied. The effectiveness of this approach to line detection is illustrated using two algorithms, both of which are based on the Sobel edge operator. The task of line detection is reduced to the task of finding isolated peaks in a Sobel image. An experimental comparison is made between these two algorithms and third algorithm taken from the literature and based on the Hough transform

    An improved algorithm for respiration signal extraction from electrocardiogram measured by conductive textile electrodes using instantaneous frequency estimation

    Get PDF
    In this paper, an improved algorithm for the extraction of respiration signal from the electrocardiogram (ECG) in home healthcare is proposed. The whole system consists of two-lead electrocardiogram acquisition using conductive textile electrodes located in bed, baseline fluctuation elimination, R-wave detection, adjustment of sudden change in R-wave area using moving average, and optimal lead selection. In order to solve the problems of previous algorithms for the ECG-derived respiration (EDR) signal acquisition, we are proposing a method for the optimal lead selection. An optimal EDR signal among the three EDR signals derived from each lead (and arctangent of their ratio) is selected by estimating the instantaneous frequency using the Hilbert transform, and then choosing the signal with minimum variation of the instantaneous frequency. The proposed algorithm was tested on 15 male subjects, and we obtained satisfactory respiration signals that showed high correlation (r2 > 0.8) with the signal acquired from the chest-belt respiration sensor

    Coherent movement of error-prone individuals through mechanical coupling

    Get PDF
    We investigate how reliable movement can emerge in aggregates of highly error-prone individuals. The individuals - robotic modules - move stochastically using vibration motors. By coupling them via elastic links, soft-bodied aggregates can be created. We present distributed algorithms that enable the aggregates to move and deform reliably. The concept and algorithms are validated through formal analysis of the elastic couplings and experiments with aggregates comprising up to 49 physical modules - among the biggest soft-bodied aggregates to date made of autonomous modules. The experiments show that aggregates with elastic couplings can shrink and stretch their bodies, move with a precision that increases with the number of modules, and outperform aggregates with no, or rigid, couplings. Our findings demonstrate that mechanical couplings can play a vital role in reaching coherent motion among individuals with exceedingly limited and error-prone abilities, and may pave the way for low-power, stretchable robots for high-resolution monitoring and manipulation

    An Experiment in Automatic Design of Robot Swarms

    Full text link

    Quality-sensitive foraging by a robot swarm through virtual pheromone trails

    Get PDF
    Large swarms of simple autonomous robots can be employed to find objects clustered at random locations, and transport them to a central depot. This solution offers system parallelisation through concurrent environment exploration and object collection by several robots, but it also introduces the challenge of robot coordination. Inspired by ants’ foraging behaviour, we successfully tackle robot swarm coordination through indirect stigmergic communication in the form of virtual pheromone trails. We design and implement a robot swarm composed of up to 100 Kilobots using the recent technology Augmented Reality for Kilobots (ARK). Using pheromone trails, our memoryless robots rediscover object sources that have been located previously. The emerging collective dynamics show a throughput inversely proportional to the source distance. We assume environments with multiple sources, each providing objects of different qualities, and we investigate how the robot swarm balances the quality-distance trade-off by using quality-sensitive pheromone trails. To our knowledge this work represents the largest robotic experiment in stigmergic foraging, and is the first complete demonstration of ARK, showcasing the set of unique functionalities it provides

    The Pi-puck Ecosystem : Hardware and Software Support for the e-puck and e-puck2

    Get PDF
    This paper presents a hardware revision of the Pi-puck extension board that now includes support for the e-puck2. This Raspberry Pi interface for the e-puck robot provides a feature-rich experimentation platform suitable for multi-robot and swarm robotics research. We also present a new expansion board that features a 9-DOF IMU and XBee interface for increased functionality. We detail the revised Pi-puck hardware and software ecosystem, including ROS support that now allows mobile robotics algorithms and utilities developed by the ROS community to be leveraged by swarm robotics researchers. We also present the results of an illustrative multi-robot mapping experiment using new long-range Time-of-Flight distance sensor modules, to demonstrate the ease-of use and efficacy of this new Pi-puck ecosystem
    • …
    corecore