57 research outputs found

    On some strong ratio limit theorems for heat kernels

    Full text link
    We study strong ratio limit properties of the quotients of the heat kernels of subcritical and critical operators which are defined on a noncompact Riemannian manifold.Comment: 16 pages. This version coincides with the published one, except for Remark 4 added after the paper has appeare

    On Liouville-type theorems and the uniqueness of the positive Cauchy problem for a class of hypoelliptic operators

    Get PDF
    This note contains a representation formula for positive solutions of linear degenerate second-order equations of the form tu(x,t)=j=1mXj2u(x,t)+X0u(x,t)(x,t)RN×],T[, \partial_t u (x,t) = \sum_{j=1}^m X_j^2 u(x,t) + X_0 u(x,t) \qquad (x,t) \in \mathbb{R}^N \times\, ]- \infty ,T[, proved by a functional analytic approach based on Choquet theory. As a consequence, we obtain Liouville-type theorems and uniqueness results for the positive Cauchy problem.Comment: The results of the present version recover most of the ones in the previous version, but, on top of it, this new version contains some further new and interesting result

    Expanding perfect fluid generalizations of the C-metric

    Full text link
    We reexamine Petrov type D gravitational fields generated by a perfect fluid with spatially homogeneous energy density and in which the flow lines form a timelike non-shearing and non-rotating congruence. It is shown that the anisotropic such spacetimes, which comprise the vacuum C-metric as a limit case, can have \emph{non-zero} expansion, contrary to the conclusion in the original investigation by Barnes (Gen. Rel. Grav. 4, 105 (1973)). This class consists of cosmological models with generically one and at most two Killing vectors. We construct their line element and discuss some important properties. The methods used in this investigation incite to deduce testable criteria regarding shearfree normality and staticity op Petrov type DD spacetimes in general, which we add in an appendix.Comment: 16 pages, extended and amended versio

    On the computation of zone and double zone diagrams

    Full text link
    Classical objects in computational geometry are defined by explicit relations. Several years ago the pioneering works of T. Asano, J. Matousek and T. Tokuyama introduced "implicit computational geometry", in which the geometric objects are defined by implicit relations involving sets. An important member in this family is called "a zone diagram". The implicit nature of zone diagrams implies, as already observed in the original works, that their computation is a challenging task. In a continuous setting this task has been addressed (briefly) only by these authors in the Euclidean plane with point sites. We discuss the possibility to compute zone diagrams in a wide class of spaces and also shed new light on their computation in the original setting. The class of spaces, which is introduced here, includes, in particular, Euclidean spheres and finite dimensional strictly convex normed spaces. Sites of a general form are allowed and it is shown that a generalization of the iterative method suggested by Asano, Matousek and Tokuyama converges to a double zone diagram, another implicit geometric object whose existence is known in general. Occasionally a zone diagram can be obtained from this procedure. The actual (approximate) computation of the iterations is based on a simple algorithm which enables the approximate computation of Voronoi diagrams in a general setting. Our analysis also yields a few byproducts of independent interest, such as certain topological properties of Voronoi cells (e.g., that in the considered setting their boundaries cannot be "fat").Comment: Very slight improvements (mainly correction of a few typos); add DOI; Ref [51] points to a freely available computer application which implements the algorithms; to appear in Discrete & Computational Geometry (available online

    Singular solutions of fully nonlinear elliptic equations and applications

    Full text link
    We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of Rn\mathbb{R}^n, and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragm\'en-Lindel\"of result as well as a principle of positive singularities in certain Lipschitz domains.Comment: 41 pages, 2 figure

    Semiclassical stationary states for nonlinear Schroedinger equations with fast decaying potentials

    Full text link
    We study the existence of stationnary positive solutions for a class of nonlinear Schroedinger equations with a nonnegative continuous potential V. Amongst other results, we prove that if V has a positive local minimum, and if the exponent of the nonlinearity satisfies N/(N-2)<p<(N+2)/(N-2), then for small epsilon the problem admits positive solutions which concentrate as epsilon goes to 0 around the local minimum point of V. The novelty is that no restriction is imposed on the rate of decay of V. In particular, we cover the case where V is compactly supported.Comment: 22 page

    Schrödinger operators in the twentieth century

    Full text link
    corecore