We study the existence of stationnary positive solutions for a class of
nonlinear Schroedinger equations with a nonnegative continuous potential V.
Amongst other results, we prove that if V has a positive local minimum, and if
the exponent of the nonlinearity satisfies N/(N-2)<p<(N+2)/(N-2), then for
small epsilon the problem admits positive solutions which concentrate as
epsilon goes to 0 around the local minimum point of V. The novelty is that no
restriction is imposed on the rate of decay of V. In particular, we cover the
case where V is compactly supported.Comment: 22 page