41 research outputs found

    Outcomes of Transcatheter Aortic Valve Replacement in Patients With Cardiogenic Shock

    Get PDF
    AIMS: The safety and efficacy of transcatheter aortic valve replacement (TAVR) with contemporary balloon expandable transcatheter valves in patients with cardiogenic shock (CS) remain largely unknown. In this study, the TAVRs performed for CS between June 2015 and September 2022 using SAPIEN 3 and SAPIEN 3 Ultra bioprosthesis from the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry were analysed. METHODS AND RESULTS: CS was defined as: (i) coding of CS within 24 h on Transcatheter Valve Therapy Registry form; and/or (ii) pre-procedural use of inotropes or mechanical circulatory support devices and/or (iii) cardiac arrest within 24 h prior to TAVR. The control group was comprised of all the other patients undergoing TAVR. Baseline characteristics, all-cause mortality, and major complications at 30-day and 1-year outcomes were reported. Landmark analysis was performed at 30 days post-TAVR. Cox-proportional multivariable analysis was performed to determine the predictors of all-cause mortality at 1 year. A total of 309 505 patients underwent TAVR with balloon-expandable valves during the study period. Of these, 5006 patients presented with CS prior to TAVR (1.6%). The mean Society of Thoracic Surgeons score was 10.76 ± 10.4. The valve was successfully implanted in 97.9% of patients. Technical success according to Valve Academic Research Consortium-3 criteria was 94.5%. In a propensity-matched analysis, CS was associated with higher in-hospital (9.9% vs. 2.7%), 30-day (12.9% vs. 4.9%), and 1-year (29.7% vs. 22.6%) mortality compared to the patients undergoing TAVR without CS. In the landmark analysis after 30 days, the risk of 1-year mortality was similar between the two groups [hazard ratio (HR) 1.07, 95% confidence interval (CI) 0.95-1.21]. Patients who were alive at 1 year noted significant improvements in functional class (Class I/II 89%) and quality of life (ΔKCCQ score +50). In the multivariable analysis, older age (HR 1.02, 95% CI 1.02-1.03), peripheral artery disease (HR 1.25, 95% CI 1.06-1.47), prior implantation of an implantable cardioverter-defibrillator (HR 1.37, 95% CI 1.07-1.77), patients on dialysis (HR 2.07, 95% CI 1.69-2.53), immunocompromised status (HR 1.33, 95% CI 1.05-1.69), New York Heart Association class III/IV symptoms (HR 1.50, 95% CI 1.06-2.12), lower aortic valve mean gradient, lower albumin levels, lower haemoglobin levels, and lower Kansas City Cardiomyopathy Questionnaire scores were independently associated with 1-year mortality. CONCLUSION: This large observational real-world study demonstrates that the TAVR is a safe and effective treatment for aortic stenosis patients presenting with CS. Patients who survived the first 30 days after TAVR had similar mortality rates to those who were not in CS

    Foregut microbiome in development of esophageal adenocarcinoma

    Get PDF
    Esophageal adenocarcinoma (EA), the type of cancer linked to heartburn due to gastroesophageal reflux diseases (GERD), has increased six fold in the past 30 years. This cannot currently be explained by the usual environmental or by host genetic factors. EA is the end result of a sequence of GERD-related diseases, preceded by reflux esophagitis (RE) and Barrett’s esophagus (BE). Preliminary studies by Pei and colleagues at NYU on elderly male veterans identified two types of microbiotas in the esophagus. Patients who carry the type II microbiota are >15 fold likely to have esophagitis and BE than those harboring the type I microbiota. In a small scale study, we also found that 3 of 3 cases of EA harbored the type II biota. The findings have opened a new approach to understanding the recent surge in the incidence of EA. 

Our long-term goal is to identify the cause of GERD sequence. The hypothesis to be tested is that changes in the foregut microbiome are associated with EA and its precursors, RE and BE in GERD sequence. We will conduct a case control study to demonstrate the microbiome disease association in every stage of GERD sequence, as well as analyze the trend in changes in the microbiome along disease progression toward EA, by two specific aims. Aim 1 is to conduct a comprehensive population survey of the foregut microbiome and demonstrate its association with GERD sequence. Furthermore, spatial relationship between the esophageal microbiota and upstream (mouth) and downstream (stomach) foregut microbiotas as well as temporal stability of the microbiome-disease association will also be examined. Aim 2 is to define the distal esophageal metagenome and demonstrate its association with GERD sequence. Detailed analyses will include pathway-disease and gene-disease associations. Archaea, fungi and viruses, if identified, also will be correlated with the diseases. A significant association between the foregut microbiome and GERD sequence, if demonstrated, will be the first step for eventually testing whether an abnormal microbiome is required for the development of the sequence of phenotypic changes toward EA. If EA and its precursors represent a microecological disease, treating the cause of GERD might become possible, for example, by normalizing the microbiota through use of antibiotics, probiotics, or prebiotics. Causative therapy of GERD could prevent its progression and reverse the current trend of increasing incidence of EA

    Interaction of Virstatin with Human Serum Albumin: Spectroscopic Analysis and Molecular Modeling

    Get PDF
    Virstatin is a small molecule that inhibits Vibrio cholerae virulence regulation, the causative agent for cholera. Here we report the interaction of virstatin with human serum albumin (HSA) using various biophysical methods. The drug binding was monitored using different isomeric forms of HSA (N form ∼pH 7.2, B form ∼pH 9.0 and F form ∼pH 3.5) by absorption and fluorescence spectroscopy. There is a considerable quenching of the intrinsic fluorescence of HSA on binding the drug. The distance (r) between donor (Trp214 in HSA) and acceptor (virstatin), obtained from Forster-type fluorescence resonance energy transfer (FRET), was found to be 3.05 nm. The ITC data revealed that the binding was an enthalpy-driven process and the binding constants Ka for N and B isomers were found to be 6.09×105 M−1 and 4.47×105 M−1, respectively. The conformational changes of HSA due to the interaction with the drug were investigated from circular dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. For 1∶1 molar ratio of the protein and the drug the far-UV CD spectra showed an increase in α- helicity for all the conformers of HSA, and the protein is stabilized against urea and thermal unfolding. Molecular docking studies revealed possible residues involved in the protein-drug interaction and indicated that virstatin binds to Site I (subdomain IIA), also known as the warfarin binding site

    ICRP workshop on the review and revision of the system of radiological protection: a focus on research priorities-feedback from the international community

    Get PDF
    This is the final version. Available on open access from IOP Publishing via the DOI in this recordData availability statement: No new data were created or analysed in this study.In September 2022, the International Commission on Radiological Protection (ICRP) organised a workshop in Estoril, Portugal, on the 'Review and Revision of the System of Radiological Protection: A Focus on Research Priorities'. The workshop, which was a side event of the European Radiation Protection Week, offered an opportunity to comment on a recent paper published by ICRP on areas of research to support the System of Radiological Protection. Altogether, about 150 individuals participated in the workshop. After the workshop, 16 of the 30 organisations in formal relations with ICRP provided written feedback. All participants and organisations followed ICRP's view that further research in various areas will offer additional support in improving the System in the short, medium, and long term. In general, it was emphasised that any research should be outcome-focused in that it should improve protection of people or the environment. Many research topics mentioned by the participants were in line with those already identified by ICRP in the paper noted above. In addition, further ideas were expressed such as, for example, that lessons learned during the COVID-19 pandemic with regards to the non-radiological social, economic and environment impacts, should be analysed for their usefulness to enhance radiological protection, and that current protection strategies and application of current radiological protection principles may need to be adapted to military scenarios like those observed recently during the military conflict in the Ukraine or the detonation of a nuclear weapon. On a broader perspective, it was discussed how radiation research and radiological protection can contribute towards the Sustainable Development Goals announced by the United Nations in 2015. This paper summarises the views expressed during the workshop and the major take home messages identified by ICRP

    Key note lecture

    No full text

    Complete reversal of stereoselectivity in cyclopropanation of 2-arylidene-1-tetralone tricarbonylchromium complexes

    No full text
    Cyclopropanation of 2-arylidene-1-tetralone tricarbonylchromium complexes with dimethylsulfoxonium methylide under phase-transfer catalysis condition provided cyclopropanes exclusively from the endo-face

    Molecular dynamics simulation of clustered DNA damage sites containing 8-oxoguanine and abasic site.

    No full text
    Clustered DNA damage sites induced by ionizing radiation have been suggested to have serious consequences to organisms, such as cancer, due to their reduced probability to be repaired by the enzymatic repair machinery of the cell. Although experimental results have revealed that clustered DNA damage sites effectively retard the efficient function of repair enzymes, it remains unclear as to what particular factors influence this retardation. In this study, approaches based on molecular dynamics (MD) simulation have been applied to examine conformational changes and energetic properties of DNA molecules containing clustered damage sites consisting of two lesioned sites, namely 7,8-dihydro-8-oxoguanine (8-oxoG) and apurinic/apyrimidinic (AP) site, located within a few base pairs of each other. After 1 ns of MD simulation, one of the six DNA molecules containing a clustered damage site develops specific characteristic features: sharp bending at the lesioned site and weakening or complete loss of electrostatic interaction energy between 8-oxoG and bases located on the complementary strand. From these results it is suggested that these changes would make it difficult for the repair enzyme to bind to the lesions within the clustered damage site and thereby result in a reduction of its repair capacity
    corecore