25 research outputs found

    Electrochemical Overview: A Summary of ACoxMnyNizO2 and Metal Oxides as Versatile Cathode Materials for Metal-Ion Batteries

    Get PDF
    Early LiCoO2 research provided the basis for the tremendous commercial success of Li+ batteries since their invention in the early 1990s. Today, LiNiMnCoO2 (Li-NMC) is one of the most widely used batteries in the rapidly evolving electronic vehicle industry. Li-NMC batteries continue to receive significant interest as research efforts aim to partially, or entirely, replace the use of scarcely available and toxic Co with elemental doping to form binary, ternary, and quaternary layered oxides. Furthermore, safety concerns and rising uncertainty for the future of Li supplies have resulted in growing curiosity toward non-Li+ rechargeable batteries such as Na+ and K+. Unfortunately, the success of Li+ host materials does not always directly transfer to Na+ and K+ batteries due to the difficulty of reversibly intercalating larger ions without irreparably distorting the host structure. Consequently, this report provides an overview of the Li-based materials surrounding the success of commercial Li-NMC and the subsequent progress of their lesser studied Na and K counterparts. The challenges for current cathode materials are highlighted, and the opportunities for progression are suggested. The summary presented in this review can be consulted to steer new and unique research avenues for layered oxide materials as metal-ion battery cathodes

    Correction to: MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms (Adv. Energy Mater., (2021), 11, (2100433), 10.1002/10.1002/aenm.202100433)

    Get PDF
    Adv. Energy Mater. 2021, 11, 2100433 DOI: 10.1002/aenm.202100433 Figure 4 in the originally published article is incorrect in the original manuscript. The correct figure is displayed below. 4 Figure (Figure presented.) SEMs of A,B,C) MoO2-G/AME and D) G/AME. Electrochemical decoration parameters: −1.4 V, 600 s. This error does not affect the conclusions of the report. The authors apologize for any inconvenience caused

    MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms

    Get PDF
    Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro-conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2-G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-butyl-3-methylimidazolium tetrafluoroborate. Optimization of the MoO2-G/AMEs demonstrates capacitance up to 1212 F g–1 when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures
    corecore