6 research outputs found

    Highlights of recent SPIDER results and improvements

    No full text
    Three years of experiments on SPIDER allowed characterization of the main features of the source plasma and of the negative ion beam, in the original design configuration. For the large dimensions of the source chamber, and of the extraction area, the investigation of the single-beamlet currents and of the source plasma uniformity had to be carried out to extend the knowledge gained in smaller prototype sources. The configuration of the multiple RF drivers and filter field topologies were found to cause a peculiar behavior in the plasma confinement in the drivers, creating left-right asymmetries which were also visible in the extracted negative ion currents, even after the early implementation of a new scheme of plasma-grid current send and return busbars that greatly improved performance at high filter fields. The plasma properties in the driver and expansion region as well as the positive ion energy at the extraction region were studied in different experimental conditions, and interpreted also with the support of numerical models, suggesting that an improved plasma confinement could contribute to the increase of the plasma density, and to a certain extent to a lowering of the plasma potential profile; both effects shall contribute to increase the presence of cold negative ions for the formation of low-divergence beamlets. Early results related to unwanted RF discharges on the back of the plasma source and the gas conductance of the beam source suggested the reduction of the vessel pressure as mitigation, leading to the definition of a new pumping system. The difficulties related to the simultaneous operation, stable control and high-power operation of multiple RF self-oscillating vacuum tube based RF generators were an unambiguous obstruction to the experimentation, calling for the implementation of RF solid-state amplifiers. The initial tests related to caesium management, the non-uniform plasma properties at different locations across the plasma grid, and the challenges in the measurement of the current and divergence of the accelerated beamlet, unambiguously resulted in the need of new diagnostic systems to investigate with better resolution the spatial uniformities. This contribution summarises how the main experimental findings in the previous experimental campaigns are driving modifications to the SPIDER experiment, during the present shut down, in view of future operations

    SPIDER, the Negative Ion Source Prototype for ITER: Overview of Operations and Cesium Injection

    No full text
    An overview of the recent operations and the main results of cesium injection in the Source for the Production of Ions of Deuterium Extracted from Rf plasma (SPIDER) negative ion source are described in this contribution. In experiments without cesium injection, all SPIDER plants were tested to verify the basic expectations on the operational parameters (e.g., electron cooling effectiveness of magnetic filter field) and to determine its operational region. For beam properties, it was shown that the current density varies across the beam in the vertical direction. In preliminary cesium experiments, the expected increase of negative ion current and simultaneous decrease of co-extracted electrons were found, along with the influence of the control parameters (polarization of the plasma electrodes, magnetic filter field) on the SPIDER beam uniformity in the horizontal and vertical directions. It was shown that non-Gaussian tails can be identified in the angular distribution on the plane perpendicular to the beam propagation direction. Stray particles, nonhomogeneous beam and large divergence might result in unexpected heat and particle loads over ITER neutral beam injector (NBI) accelerator grids; it is the goal of SPIDER to assess and possibly to identify suitable methods for controlling these beam features. A major shutdown, planned for late 2021, to solve the issues identified during the operation and to carry out scheduled modifications, is outlined. Such improvements are expected to allow SPIDER to pursue the ITER requirements in terms of negative ion current, electron-to-ion ratio, and beam duration

    On the road to ITER NBIs: SPIDER improvement after first operation and MITICA construction progress

    Get PDF
    To reach fusion conditions and control the plasma configuration in ITER, the next step in tokamak fusion research, two neutral beam injectors (NBIs) will supply 16.5 MW each, by neutralizing accelerated negative hydrogen or deuterium ions. The requirements of ITER NBIs (40A/1 MeV D- ions for 641 h, 46A/870 keV H- ions for 641000 s) have never been simultaneously attained. So in the Neutral Beam Test Facility (NBTF, Consorzio RFX, Italy) the operation of the full-scale ITER NBI prototype (MITICA) will be tested and optimised up to full performances, focussing on accelerator (including voltage holding), beam optics, neutralisation, residual ion removal. The NBTF includes also the full-scale prototype of the ITER NBI source with 100 keV particle energy (SPIDER), for early investigation of: negative ion production and extraction, source uniformity, negative ion current density and beam optics. This paper will describe the main results of the first two years of SPIDER operation, devoted to characterizing plasma and beam parameters, including investigation of RF-plasma coupling efficiency and magnetic filter field effectiveness in reducing co-extracted electrons. SPIDER is progressing towards the first caesium injection, which aims at increasing the negative ion density. A major shutdown, planned for 2021, to solve the issues identified during the operation and to carry out programmed modifications, will be outlined. The installation of each MITICA power supply and auxiliary system is completed; in-vessel mechanical components are under procurement by Fusion for Energy (F4E). Integration, commissioning and test of the power supplies, procured by F4E and QST, as the Japanese Domestic Agency (JADA), will be presented. In particular, 1.0MV insulating tests were carried out step-by-step and successfully completed. In 2020 integrated tests of the power supplies on the accelerator dummy load started, including the assessment of their resilience to accelerator grid breakdowns using a short-circuit device located in vacuum. The aggressive programme, to validate the NBI design at NBTF and to meet ITER schedule (requiring NBIs in operation in 2032), will be outlined. Unfortunately, in 2020 the coronavirus disease infection affected the NBTF activities. A solution to proceed with integrated power tests despite the coronavirus is presented

    Risk of Guillain-Barré syndrome after 2010-2011 influenza vaccination.

    No full text
    Influenza vaccination has been implicated in Guillain Barré Syndrome (GBS) although the evidence for this link is controversial. A case-control study was conducted between October 2010 and May 2011 in seven Italian Regions to explore the relation between influenza vaccination and GBS. The study included 176 GBS incident cases aged ≥18 years from 86 neurological centers. Controls were selected among patients admitted for acute conditions to the Emergency Department of the same hospital as cases. Each control was matched to a case by sex, age, Region and admission date. Two different analyses were conducted: a matched case-control analysis and a self-controlled case series analysis (SCCS). Case-control analysis included 140 cases matched to 308 controls. The adjusted matched odds ratio (OR) for GBS occurrence within 6 weeks after influenza vaccination was 3.8 (95 % CI: 1.3, 10.5). A much stronger association with gastrointestinal infections (OR = 23.8; 95 % CI 7.3, 77.6) and influenza-like illness or upper respiratory tract infections (OR = 11.5; 95 % CI 5.6, 23.5) was highlighted. The SCCS analysis included all 176 GBS cases. Influenza vaccination was associated with GBS, with a relative risk of 2.1 (95 % CI 1.1, 3.9). According to these results the attributable risk in adults ranges from two to five GBS cases per 1,000,000 vaccinations

    Essential Oils and Related Products

    No full text
    corecore