22 research outputs found

    Electrochemically Deposited Polypyrrole for Dye-Sensitized Solar Cell Counter Electrodes

    Get PDF
    Polypyrrole films were coated on conductive glass by electrochemical deposition (alternative current or direct current process). They were then used as the dye-sensitized solar cell counter electrodes. Scanning electron microscopy revealed that polypyrrole forms a nanoparticle-like structure on the conductive glass. The amount of deposited polypyrrole (or film thickness) increased with the deposition duration, and the performance of polypyrrole based-dye-sensitized solar cells is dependant upon polymer thickness. The highest efficiency of alternative current and direct current polypyrrole based-dye-sensitized solar cells (DSSCs) is 4.72% and 4.02%, respectively. Electrochemical impedance spectroscopy suggests that the superior performance of alternative current polypyrrole solar cells is due to their lower charge-transfer resistance between counter electrode and electrolyte. The large charge-transfer resistance of direct current solar cells is attributed to the formation of unbounded polypyrrole chains minimizing the I3 − reduction rate

    A substoichiometric tungsten oxide catalyst provides a sustainable and efficient counter electrode for dye-sensitized solar cells

    No full text
    Development of Pt-free catalyst materials for the counter electrode (CE) in dye-sensitized solar cells (DSSCs) has been regarded as one of the crucial steps to improving energy conversion efficiency and cost effectiveness of DSSCs. In this work, low cost tungsten oxide (WO3-x) counter electrodes, prepared by annealing tungsten metal sheets under an Ar and low O2atmosphere, exhibited high catalytic activity and energy conversion efficiency. The highest efficiency achieved here for DSSCs with WO3-xcounter electrodes, was 5.25%, obtained from a 500 °C annealed tungsten sheet. TEM and XPS analysis suggested the formation of sub-stoichiometric tungsten oxide layer (∼WO2.6) with the presence of W6+, W5+and W4+oxidation states at the tungsten metal surface after the 500 °C annealing. Only W6+and W5+oxidation states were detected after a 600 °C annealing indicating the formation of a more stoichiometric tungsten oxide layer (∼WO2.8) and resulting in a drop in efficiency of the DSSC. We suggest that mixed valence tungsten states account for the excellent catalytic activity and good electrical conductivity as evidenced by the highest cyclic voltammetry response of 0.76 mA/cm2and the lowest impedance value of 44.33 Ω, respectively

    Influence of Acid Modification Multiwall Carbon Nanotube Counter Electrodes on the Glass and Flexible Dye-Sensitized Solar Cell Performance

    No full text
    Multiwall carbon nanotubes (MWCNTs) were modified by acids (H2SO4 : HNO3) for generating active groups on the nanotube surface. Unmodified- and modified-carbon nanotubes were coated on the conductive glass and conductive plastic substrates by a slurry paste method, and they were used as the counter electrodes (CEs) of dye-sensitized solar cells (DSSCs). Scanning electron microscopy reveals that carbon nanotubes are evenly deposited on the conductive glass. The efficiency of the glass based DSSCs of unmodified- and modified-carbon nanotubes and Pt CEs is ~4.73%, ~5.66%, and ~6.08%, respectively. The efficiency of the plastic based DSSCs of the unmodified- and modified-carbon nanotubes CEs is ~0.80% and ~2.11%, respectively. The voltammogram and electrochemical impedance spectroscopy results suggest that the superior performance of the modified-carbon nanotubes DSSCs is attributable to the high electrocatalytic activity and the low charge-transfer resistance of the modified-carbon nanotubes film over the unmodified-carbon nanotubes film
    corecore