36 research outputs found

    Internal dose of particles in the elderly: modeling based on aerosol measurements

    Get PDF
    The paper presents an integrated methodology that combines experimental and modeling techniques and links exposure to airborne particulate matter (PM) with internal dose in the respiratory system and burden in adjacent tissues over a period of time. The methodology is used to estimate doses in the respiratory systems of elders that reside in 10 elderly care centers (ECCs) in the metropolitan area of Lisbon. Measurements of PM were performed in the ECCs and combined with a time-budget survey for the occupants. This information served as input to the first model that estimated particle doses in the different regions of the respiratory tract of the elderly, and then a second model was used to calculate particle build-up in the alveolar region, the interstitium and the hilar lymph nodes of the elders over a 5-year exposure period. It was found that in 5 years of continuous exposure to the average particle concentration measured over all ECCs, 258 mg of all particles are deposited on the surface of the alveoli of which 79.6% are cleared, 18.8% are retained in the alveolar region, 1.5% translocate to the hilar lymph nodes, and 0.1% are transferred to the interstitium.info:eu-repo/semantics/publishedVersio

    Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST.

    Get PDF
    In spite of recent advances in describing the health outcomes of exposure to nanoparticles (NPs), it still remains unclear how exactly NPs interact with their cellular targets. Size, surface, mass, geometry, and composition may all play a beneficial role as well as causing toxicity. Concerns of scientists, politicians and the public about potential health hazards associated with NPs need to be answered. With the variety of exposure routes available, there is potential for NPs to reach every organ in the body but we know little about the impact this might have. The main objective of the FP7 NanoTEST project ( www.nanotest-fp7.eu ) was a better understanding of mechanisms of interactions of NPs employed in nanomedicine with cells, tissues and organs and to address critical issues relating to toxicity testing especially with respect to alternatives to tests on animals. Here we describe an approach towards alternative testing strategies for hazard and risk assessment of nanomaterials, highlighting the adaptation of standard methods demanded by the special physicochemical features of nanomaterials and bioavailability studies. The work has assessed a broad range of toxicity tests, cell models and NP types and concentrations taking into account the inherent impact of NP properties and the effects of changes in experimental conditions using well-characterized NPs. The results of the studies have been used to generate recommendations for a suitable and robust testing strategy which can be applied to new medical NPs as they are developed

    Strategies, methods and tools for managing nanorisks in construction

    Get PDF
    This paper presents a general overview of the work carried out by European project SCAFFOLD (GA 280535) during its 30 months of life, with special emphasis on risk management component. The research conducted by SCAFFOLD is focused on the European construction sector and considers 5 types of nanomaterials (TiO2, SiO2, carbon nanofibres, cellulose nanofibers and nanoclays), 6 construction applications (Depollutant mortars, selfcompacting concretes, coatings, self-cleaning coatings, fire resistant panels and insulation materials) and 26 exposure scenarios, including lab, pilot and industrial scales. The document focuses on the structure, content and operation modes of the Risk Management Toolkit developed by the project to facilitate the implementation of "nano-management" in construction companies. The tool deploys and integrated approach OHSAS 18001 - ISO 31000 and is currently being validated on 5 industrial case studies.Research carried out by project SCAFFOLD was made possible thanks to funding from the European Commission, through the Seventh Framework Programme (GA 280535

    Modeling of occupational exposure to accidentally released manufactured nanomaterials in a production facility and calculation of internal doses by inhalation

    No full text
    Background: Occupational exposure to manufactured nanomaterials (MNMs) and its potential health impacts are of scientific and practical interest, as previous epidemiological studies associate exposure to nanoparticles with health effects, including increased morbidity of the respiratory and the circulatory system. Objectives: To estimate the occupational exposure and effective internal doses in a real production facility of TiO2 MNMs during hypothetical scenarios of accidental release. Methods: Commercial software for geometry and mesh generation, as well as fluid flow and particle dispersion calculation, were used to estimate occupational exposure to MNMs. The results were introduced to in-house software to calculate internal doses in the human respiratory tract by inhalation. Results: Depending on the accidental scenario, different areas of the production facility were affected by the released MNMs, with a higher dose exposure among individuals closer to the particles source. Conclusions: Granted that the study of the accidental release of particles can only be performed by chance, this numerical approach provides valuable information regarding occupational exposure and contributes to better protection of personnel. The methodology can be used to identify occupational settings where the exposure to MNMs would be high during accidents, providing insight to health and safety officials.This work was supported by project SCAFFOLD [project number NMP4-SL-2012-280535] of the European Commission (FP7)

    Computational modeling as part of alternative testing strategies in the respiratory and cardiovascular systems: Inhaled nanoparticle dose modeling based on representative aerosol measurements and corresponding toxicological analysis

    No full text
    The objectives of modeling in this work were (a) the integration of two existing numerical models in order to connect external exposure to nanoparticles (NPs) with internal dose through inhalation, and (b) to use computational fluid-particle dynamics (CFPD) to analyze the behavior of NPs in the respiratory and the cardiovascular system. Regarding the first objective, a lung transport and deposition model was combined with a lung clearance/retention model to estimate NPs dose in the different regions of the human respiratory tract and some adjacent tissues. On the other hand, CFPD was used to estimate particle transport and deposition of particles in a physiologically based bifurcation created by the third and fourth lung generations (respiratory system), as well as to predict the fate of super-paramagnetic particles suspended in a liquid under the influence of an external magnetic field (cardiovascular system). All the above studies showed that, with proper refinement, the developed computational models and methodologies may serve as an alternative testing strategy, replacing transport/deposition experiments that are expensive both in time and resources and contribute to risk assessment. © 2013 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted

    Children's exposure to size-fractioned particulate matter: Chemical composition and internal dose

    No full text
    The health effects of the particulate matter (PM) depend not only on its aerodynamic diameter (AD) and chemical composition, but also on the time activity pattern of the individuals and on their age. The main objective of this work was to assess the exposure of children to aerosol particles by using personal instruments, to study the particle size and composition of the inhaled PM, and to estimate their transport and deposition into the human respiratory tract (HRT). The average daily PM2.5 exposure was 19 μg/m3 and the size fractions with the greatest contribution to PM2.5 concentrations were 1 < AD <2.5 μm and AD <0.25 μm. Results indicated a contribution of 9% from the mineral aerosol, 7.2% from anthropogenic sulphate, 6.7% from black carbon and 5% from anthropogenic trace elements to the daily exposure to PM2.5. The levels of mineral and marine elements increased with increasing particle size, while anthropogenic elements were present in higher concentrations in the finest particles. Particle size has been shown to influence the variability of daily dose deposited between the extrathoracic and alveolar-interstitial zones. On average, 3% of the PM deposited in the bronchial region, whereas 5% to 8% were found in the bronchiolar region. The level of physical activity had a significant contribution to the total daily dose.This work was supported by LIFE Index-Air project (LIFE15 ENV/PT/000674). This work reflects only the authors' view and EASME is not responsible for any use that may be made of the information it contains. Authors also gratefully acknowledge the FCT support through the UIDB/04349/2020 project and the PhD grants SFRH/BD/129149/2017 and SFRH/BD/147074/2019. M. Pilou's research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Reinforcement of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (ΙΚΥ). The authors are also grateful for the support to CESAM (UIDB/50017/2020 & UIDP/50017/2020) to FCT/MCTES through national funds, and co-funding by FEDER, within the PT2020 Partnership Agreement and Compete 2020.Peer reviewe
    corecore