231 research outputs found

    Morphoregulatory Functions of the RNA-Binding Motif Protein 3 in Cell Spreading, Polarity and Migration

    Get PDF
    RNA-binding proteins are emerging as key regulators of transitions in cell morphology. The RNA-binding motif protein 3 (RBM3) is a cold-inducible RNA-binding protein with broadly relevant roles in cellular protection, and putative functions in cancer and development. Several findings suggest that RBM3 has morphoregulatory functions germane to its roles in these contexts. For example, RBM3 helps maintain the morphological integrity of cell protrusions during cell stress and disease. Moreover, it is highly expressed in migrating neurons of the developing brain and in cancer invadopodia, suggesting roles in migration. We here show that RBM3 regulates cell polarity, spreading and migration. RBM3 was present in spreading initiation centers, filopodia and blebs that formed during cell spreading in cell lines and primary myoblasts. Reducing RBM3 triggered exaggerated spreading, increased RhoA expression, and a loss of polarity that was rescued by Rho kinase inhibition and overexpression of CRMP2. High RBM3 expression enhanced the motility of cells migrating by a mesenchymal mode involving extension of long protrusions, whereas RBM3 knockdown slowed migration, greatly reducing the ability of cells to extend protrusions and impairing multiple processes that require directional migration. These data establish novel functions of RBM3 of potential significance to tissue repair, metastasis and development

    Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design

    Get PDF
    The soil transmitted helminths are a group of parasitic worms responsible for extensive mor- bidity in many of the world’s most economically depressed locations. With growing empha- sis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing- based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays

    The growth companies puzzle: can growth opportunities measures predict firm growth?

    Get PDF
    While numerous empirical studies include proxies for growth opportunities in their analyses, there is limited evidence as to the validity of the various growth proxies used. Based on a sample of 1942 firm-years for listed UK companies over the 1990-2004 period, we assess the performance of eight growth opportunities measures. Our results show that while all the growth measures show some ability to predict growth in company sales, total assets, or equity, there are substantial differences between the various models. In particular, Tobin's Q performs poorly while dividend-based measures generally perform best. However, none of the measures has any success in predicting earnings per share growth, even when controlling for mean reversion and other time-series patterns in earnings. We term this the 'growth companies puzzle'. Growth companies do grow, but they do not grow in the key dimension (earnings) theory predicts. Whether the failure of 'growth companies' to deliver superior earnings growth is attributable to increased competition, poor investments, or behavioural biases, it is still a puzzle why growth companies on average fail to deliver superior earnings growth

    Time for T? Immunoinformatics Addresses Vaccine Design for Neglected Tropical and Emerging Infectious Diseases

    Get PDF
    Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world\u27s poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere

    A Novel, Species-Specific, Real-Time PCR Assay for the Detection of the Emerging Zoonotic Parasite Ancylostoma Ceylanicum in Human Stool

    Get PDF
    Historically, Ancylostoma ceylanicum has been viewed as an uncommon cause of human hookworm infection, with minimal public health importance. However, recent reports have indicated that this zoonotic hookworm causes a much greater incidence of infection within certain human populations than was previously believed. Current methods for the species-level detection of A. ceylanicum rely on techniques that involve conventional PCR accompanied by restriction enzyme digestions. These PCR-based assays are not only labo- rious but they lack sensitivity as they target suboptimal regions on the DNA. As efforts aimed at the eradication of hookworm disease have grown substantially over the last decade, the need for sensitive and specific tools to monitor and evaluate programmatic successes has correspondingly escalated. Since a growing body of evidence suggests that patient responses to drug treatment can vary based upon the species of hookworm that is causing infection, accurate species-level diagnostics are advantageous. Accordingly, the novel real-time PCR-based assay described here provides a sensitive, species-specific diag- nostic tool that will facilitate the accurate mapping of disease endemicity and will aid in the evaluation of progress of programmatic deworming efforts

    Magnetic and intruder rotational bands in (113)In

    Get PDF
    ©2005 American Physical SocietyExcited states in ¹¹³In were populated via the reactions ¹⁰⁰Mo(¹⁸O,p4n)¹¹³In and ¹¹⁰Pd(7Li,4n)¹¹³In. The two known ΔJ = 2 intruder bands, based on the πg7/2 ⊗ d5/2 and πh11/2 orbitals, have been extended by 8¯h to spins (49/2+)¯h and (55/2−)¯h, respectively. The previous finding of three sequences of ΔJ = 1 γ -ray transitions has been confirmed. A self-consistent cranked shell-model calculation gives a good description of the contrasting alignment patterns of the two ΔJ = 2 intruder bands. The intruder bands, the known sequences ofM1 transitions, and spherical levels together represent a coexistence of three different excitation modes in this nucleus.S. Naguleswaran, R. S. Chakrawarthy, U. Garg, K. L. Lamkin, G. Smith, J. C. Walpe, A. Galindo-Uribarri, V. P. Janzen, D. C. Radford, R. Kaczarowski, D. B. Fossan, D. R. Lafosse, P. Vaska, Ch. Droste, T. Morek, S. Pilotte, J. DeGraaf, T. Drake, and R. Wys

    Parasitic Infection Surveillance in Mississippi Delta Children

    Get PDF
    Some recent studies suggest ongoing transmission of parasitic diseases in the American South; however, surveys in Mississippi children are lacking. We enrolled 166 children (median age 8 years, range 4–13 years) from the Mississippi Delta region and carried out multi-parallel real-time polymerase chain reaction (PCR) for Necator americanus, Ascaris lumbricoides, and Strongyloides stercoralis on their stool samples. Dried blood spots were obtained for multiplex serology antibody detection. Of 166 children, all reported having flushable toilets, 11% had soil exposure, and 34% had a pet dog or cat. None had prior diagnosis or treatment of parasitic disease. Multi-parallel real-time PCRs were negative on the 89 stool DNA extracts available for testing. Dried blood spot testing of all 166 children determined the seroprevalence of IgG antibodies to Toxocara spp. (3.6%), Cryptosporidium (2.4%), S. stercoralis, Fasciola hepatica, and Giardia duodenalis (all 0%). In conclusion, parasitic infections and exposure were scarce in this population. Larger studies of at-risk populations are needed

    Widespread Regulation of miRNA Biogenesis at the Dicer Step by the Cold-Inducible RNA-Binding Protein, RBM3

    Get PDF
    MicroRNAs (miRNAs) play critical roles in diverse cellular events through their effects on translation. Emerging data suggest that modulation of miRNA biogenesis at post-transcriptional steps by RNA-binding proteins is a key point of regulatory control over the expression of some miRNAs and the cellular processes they influence. However, the extent and conditions under which the miRNA pathway is amenable to regulation at posttranscriptional steps are poorly understood. Here we show that RBM3, a cold-inducible, developmentally regulated RNA-binding protein and putative protooncogene, is an essential regulator of miRNA biogenesis. Utilizing miRNA array, Northern blot, and PCR methods, we observed that over 60% of miRNAs detectable in a neuronal cell line were significantly downregulated by knockdown of RBM3. Conversely, for select miRNAs assayed by Northern blot, induction of RBM3 by overexpression or mild hypothermia increased their levels. Changes in miRNA expression were accompanied by changes in the levels of their ∼70 nt precursors, whereas primary transcript levels were unaffected. Mechanistic studies revealed that knockdown of RBM3 does not reduce Dicer activity or impede transport of pre-miRNAs into the cytoplasm. Rather, we find that RBM3 binds directly to ∼70 nt pre-miRNA intermediates and promotes / de-represses their ability as larger ribonucleoproteins (pre-miRNPs) to associate with active Dicer complexes. Our findings suggest that the processing of a majority of pre-miRNPs by Dicer is subject to an intrinsic inhibitory influence that is overcome by RBM3 expression. RBM3 may thus orchestrate changes in miRNA expression during hypothermia and other cellular stresses, and in the euthermic contexts of early development, differentiation, and oncogenesis where RBM3 expression is highly elevated. Additionally, our data suggest that temperature-dependent changes in miRNA expression mediated by RBM3 may contribute to the therapeutic effects of hypothermia, and are an important variable to consider in in vitro studies of translation-dependent cellular events

    Parasitic Disease Surveillance, Mississippi, USA

    Get PDF
    Surveillance for soil-transmitted helminths, strongyloidiasis, cryptosporidiosis, and giardiasis was conducted in Mississippi, USA. PCR performed on 224 fecal samples for all soil-transmitted helminths and on 370 samples for only Necator americanus and Strongyloides stercoralis identified 1 S. stercoralis infection. Seroprevalences were 8.8% for Toxocara, 27.4% for Cryptosporidium, 5.7% for Giardia, and 0.2% for Strongyloides parasites

    Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in juvenile diabetes

    Get PDF
    A defect in indoleamine 2,3-dioxygenase 1 (IDO1), which is responsible for immunoregulatory tryptophan catabolism, impairs development of immune tolerance to autoantigens in NOD mice, a model for human autoimmune type 1 diabetes (T1D). Whether IDO1 function is also defective in T1D is still unknown. We investigated IDO1 function in sera and peripheral blood mononuclear cells (PBMCs) from children with T1D and matched controls. These children were further included in a discovery study to identify SNPs in IDO1 that might modify the risk of T1D. T1D in children was characterized by a remarkable defect in IDO1 function. A common haplotype, associated with dysfunctional IDO1, increased the risk of developing T1D in the discovery and also confirmation studies. In T1D patients sharing such a common IDO1 haplotype, incubation of PBMCs in vitro with tocilizumab (TCZ) - an IL-6 receptor blocker - would, however, rescue IDO1 activity. In an experimental setting with diabetic NOD mice, TCZ was found to restore normoglycemia via IDO1-dependent mechanisms. Thus, functional SNPs of IDO1 are associated with defective tryptophan catabolism in human T1D, and maneuvers aimed at restoring IDO1 function would be therapeutically effective in at least a subgroup of T1D pediatric patients.The authors wish to thank patients and subjects who participated in this study, as well as nurses and staff of the Pediatric Clinic of S. Maria della Misericordia Hospital (Perugia), Juvenile Diabetes Center-Anna Meyer Children's Hospital (Florence), Unit of Endocrinology and Diabetes-'Bambino Gesu' Children's Hospital (Rome), Hopital Necker-Enfants Malades (Paris), and Diabetes and Metabolism Service-University Hospital Centre of Coimbra (Coimbra). The authors wish also to thank Roberto Gerli for the gift of TCZ, Giovanni Ricci for histologies, and Francisco Carrilho and Eduarda Coutinho for providing and processing, respectively, DNA samples from the Portuguese cohorts. This work was supported by the European Research Council (338954-DIDO to UG) and, in part, by Associazione per l'Aiuto ai Giovani con Diabete Italia e dell'Umbria (to UG) and the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013 to AC) and the Fundacao para a Ciencia e Tecnologia (contracts IF/00735/2014 to AC, and SFRH/BPD/96176/2013 to CC).info:eu-repo/semantics/publishedVersio
    corecore