201 research outputs found

    Very large hail occurrence in Poland from 2007 to 2015

    Get PDF
    Very large hail is known as a presence of a hailstone greater or equal to 5 cm in diameter. This phenomenon is rare but its significant consequences, not only to agriculture but also to automobiles, households and people outdoor makes it essential thing to examine. Hail appearance is strictly connected with storms frequency and its kind. The most hail-endangered kind of storm is supercell storm. Geographical distribution of hailstorms was compared with geographical distribution of storms in Poland. Similarities were found. The area of the largest number of storms is southeastern Poland. Analyzed European Severe Weather Database (ESWD) data showed that most of very large hail reports occurred in this part of Poland. The probable reason for this situation is the longest period of lasting tropical airmasses in southeastern Poland. Spatial distribution analysis shows also more hail incidents over Upper Silesia, Lesser Poland, Subcarpathia and Świętokrzyskie regions. The information source about hail occurrence was ESWD - open database, where everyone can add report and find reports which meet given search criteria. 69 hailstorms in the period of 2007 – 2015 were examined. They caused 121 very large hail reports. It was found that there is large disproportion in number of hailstorms and hail reports between individual years. Very large hail season in Poland begins in May and ends in September with cumulation in July. Most of hail occurs between 12:00 and 17:00 UTC, but there were some cases of very large (one extremely large) hail at night and early morning hours. However very large hail is a spectacular phenomenon, its local character determines potentially high information loss rate and it is the most significant problem in hail research

    A kinetic equation for repulsive coalescing random jumps in continuum

    Get PDF
    A continuum individual-based model of hopping and coalescing particles is introduced and studied. Its microscopic dynamics are described by a hierarchy of evolution equations obtained in the paper. Then the passage from the micro- to mesoscopic dynamics is performed by means of a Vlasov-type scaling. The existence and uniqueness of solutions of the corresponding kinetic equation are proved

    The Mesoscale Convective Systems with bow echo radar signatures as an example of extremely severe and widespread geohazard in Poland

    Get PDF
    In the last two decades we can notice a significant increase of severe anemological events, which are mostly connected with mesoscale convective systems and a cold front of a deep low-pressure system. One of them are very strong winds with speeds more than 25 m/s. They caused material damage and threatening people’s lives. The most dangerous are winds generated by mesoscale convective systems where radar reflectivity signatures of bow echo/derecho appeared. In this paper the area of occurrence of such phenomenon in Poland are described and the features of bow echo signatures on radar images are presented and explained. Additionally one of the most severe event and still very weakly known episode of 11th August 2017 derecho in Poland is analysed. The damage data from European Severe Weather Database (ESWD) were analysed to confirm if the August 11th storm met derecho criteria. To identify the radar reflectivity signatures inside MCC the data from the Polish Institute of Meteorology and Water Management shared on the radar-opadow.pl site were used. The CAPPI 1 km data were very useful to determine the convective forms. After that the data from synoptic station were examined for presenting the running of selected meteorological elements. Finally, some information about material damage in infrastructures and forests are mentioned

    On the Statistical Mechanics of Large Populations

    Full text link
    There exists a wide variety of works on the dynamics of large populations ranging from simple heuristic modeling to those based on advanced computer supported methods. Their interconnections, however, remain mostly vague, which significantly limits the effectiveness of using computer methods in this domain. The aim of the present publication is to propose a concept based on the experience elaborated in the nonequilibrium statistical mechanics of interacting physical particles. Its key aspect is to explicitly describe micro-states of populations of interacting entities as probability measures and then to link this description to its macroscopic counterpart based on kinetic-like equations, suitable for solving numerically. The pivotal notion introduced here is a sub-Poissonian state where the large n asymptotic of the probability of finding n particles in a given vessel is similar to that for noninteracting entities, for which macro- and microscopic descriptions are equivalent. To illustrate the concept, an individual based model of an infinite population of interacting entities is proposed and analyzed. For this population, its evolution preserves sub-Poissonian states, that allows one to describe it through the correlation functions of such states for which a chain of evolution equations is obtained. The corresponding kinetic equation is derived and numerically solved and analyzed

    Modelling short channel mosfets for use in VLSI

    Get PDF
    In an investigation of metal oxide semiconductor field effect transistor (MOFSET) devices, a one-dimensional mathematical model of device dynamics was prepared, from which an accurate and computationally efficient drain current expression could be derived for subsequent parameter extraction. While a critical review revealed weaknesses in existing 1-D models (Pao-Sah, Pierret-Shields, Brews, and Van de Wiele), this new model in contrast was found to allow all the charge distributions to be continuous, to retain the inversion layer structure, and to include the contribution of current from the pinched-off part of the device. The model allows the source and drain to operate in different regimes. Numerical algorithms used for the evaluation of surface potentials in the various models are presented

    Wind Shear and the Strength of Severe Convective Phenomena - Preliminary Results from Poland in 2011–2015

    Get PDF
    Severe convective phenomena cause significant loss in the economy and, primarily, casualties. Therefore, it is essential to forecast such extreme events to avoid or minimize the negative consequences. Wind shear provides an updraft-downdraft separation in the convective cell, which extends the cell lifetime. Wind shears between a few different air layers have been examined in all damaging convective cases in Poland, taken from the European Severe Weather Database between 2011 and 2015, in order to find their values and patterns according to the intensity of this phenomenon. Each severe weather report was assigned wind shear values from the nearest sounding station, and subsequently the presented summary was made. It was found that wind shear values differ between the given phenomena and their intensity. This regularity is particularly visible in shears containing 0 km wind. The highest shears occur within wind reports. Lower values are associated with hail reports. An important difference between weak and F1+ tornadoes was found in most of the wind shears. Severe phenomena probability within 0–6 km and 0–1 km shears show different patterns according to the phenomena and their intensity. This finding has its application in severe weather forecasting
    corecore