984 research outputs found

    Greek Myth on Etruscan Urns from Perusia: the sacrifice of Iphigenia

    Get PDF
    The production of cremation urns of Perusia is one of the most important of North Etruria, and many of them were decorated with scenes of myth. The meaning of a myth is strictly related to its social and cultural context. Indeed, the reception of an iconographical theme depends on the specific cultural setting and each society perceives and re-elaborates the same image in different ways. This paper examines the use of the myth of the sacrifice of Iphigenia for the local Etruscan context of the second and first century B.C.E. The representation of that myth enjoyed in Perusia a success that is much greater than in Greek context, revealing the creative approach of the Perusian sculptors and the culture of their patrons

    Clinical relevance of biological variation of B-Type Natriuretic Peptide

    Get PDF

    Synergistic Gravity and the Role of Resonances in GRS-Inspired Braneworlds

    Full text link
    We consider 5D braneworld models of quasi-localized gravity in which 4D gravity is reproduced at intermediate scales while the extra dimension opens up at both the very short and the very long distances, where the geometry is flat. Our main interest is the interplay between the zero mode of these models, whenever a normalizable zero mode exists, and the effects of zero energy graviton resonant modes coming from the contributions of massive KK modes. We first consider a compactified version of the GRS model and find that quasi-localized gravity is characterized by a scale for which both the resonance and the zero mode have significant contribution to 4D gravity. Above this scale, gravity is primarily mediated by the zero mode, while the resonance gives only minor corrections. Next, we consider an asymmetric version of the standard non-compact GRS model, characterized by different cosmological constants on each AdS side. We show that a resonance is present but the asymmetry, through the form of the localizing potential, can weaken it, resulting in a shorter lifetime and, thus, in a shorter distance scale for 4D gravity. As a third model exhibiting quasi-localization, we consider a version of the GRS model in which the central positive tension brane has been replaced by a configuration of a scalar field propagating in the bulk.Comment: 18 pages, 3 figures, added 1 figure, revised version as published in Class. Quant. Gra

    The radion and the perturbative metric in RS1

    Get PDF
    We calculate the linearized metric perturbations in the five dimensional two-brane model of Randall and Sundrum. In a carefully chosen gauge, we write down and decouple Einstein equations for the perturbations and get the final and simple perturbative metric ansatz. This ansatz turns out to be equal to the linear expansion of the metric solution of Charmousis et al. \cite{rubakov}. We show that this ansatz, the metric ansatz of Boos et al. \cite{boos} and the one of Das and Mitov \cite{das} are not incompatible, as it appears on the surface, but completely equivalent by an allowed gauge transformation that we give.Comment: 12 pages, no figures, LaTeX, typos fixed, 1 reference adde

    Gauss-Bonnet gravity renders negative tension braneworlds unstable

    Full text link
    We show that the Gauss-Bonnet correction to Einstein gravity induces a gravitational tachyon mode, namely an unstable spin 2 fluctuation, in the Randall-Sundrum I model. We demonstrate that this instability is generically related to the presence of a negative tension brane in the set-up, with or without Z2Z_2-symmetry across it. Indeed it is shown that the tachyon mode is a bound state localised on any negative tension brane of co-dimension one, embedded in anti-de Sitter background. We discuss the possible resolution of this instability by the inclusion of induced gravity terms on the branes or by an effective four-dimensional cosmological constant.Comment: published versio

    Spontaneous Lorentz Breaking and Massive Gravity

    Get PDF
    We study a theory where the presence of an extra spin-two field coupled to gravity gives rise to a phase with spontaneously broken Lorentz symmetry. In this phase gravity is massive, and the Weak Equivalence Principle is respected. The newtonian potentials are in general modified, but we identify an non-perturbative symmetry that protects them. The gravitational waves sector has a rich phenomenology: sources emit a combination of massless and massive gravitons that propagate with distinct velocities and also oscillate. Since their velocities differ from the speed of light, the time of flight difference between gravitons and photons from a common source could be measured.Comment: 4 page

    Massive Gravity on a Brane

    Get PDF
    At present no theory of a massive graviton is known that is consistent with experiments at both long and short distances. The problem is that consistency with long distance experiments requires the graviton mass to be very small. Such a small graviton mass however implies an ultraviolet cutoff for the theory at length scales far larger than the millimeter scale at which gravity has already been measured. In this paper we attempt to construct a model which avoids this problem. We consider a brane world setup in warped AdS spacetime and we investigate the consequences of writing a mass term for the graviton on a the infrared brane where the local cutoff is of order a large (galactic) distance scale. The advantage of this setup is that the low cutoff for physics on the infrared brane does not significantly affect the predictivity of the theory for observers localized on the ultraviolet brane. For such observers the predictions of this theory agree with general relativity at distances smaller than the infrared scale but go over to those of a theory of massive gravity at longer distances. A careful analysis of the graviton two-point function, however, reveals the presence of a ghost in the low energy spectrum. A mode decomposition of the higher dimensional theory reveals that the ghost corresponds to the radion field. We also investigate the theory with a brane localized mass for the graviton on the ultraviolet brane, and show that the physics of this case is similar to that of a conventional four dimensional theory with a massive graviton, but with one important difference: when the infrared brane decouples and the would-be massive graviton gets heavier than the regular Kaluza--Klein modes, it becomes unstable and it has a finite width to decay off the brane into the continuum of Kaluza-Klein states.Comment: 26 pages, LaTeX. v2: extended version with an appendix added about non Fierz-Pauli mass terms. Few typos corrected. Final version appeared in PR

    Cosmological Rescaling through Warped Space

    Full text link
    We discuss a scenario where at least part of the homogeneity on a brane world can be directly related to the hierarchy problem through warped space. We study the dynamics of an anti-D3-brane moving toward the infrared cut-off of a warped background. After a region described by the DBI action, the self-energy of the anti-D3-brane will dominate over the background. Then the world-volume scale of the anti-D3-brane is no longer comoving with the background geometry. After it settles down in the infrared end, the world-volume inhomogeneity will appear, to a Poincare observer, to be stretched by an exponentially large ratio. This ratio is close to that of the hierarchy problem between the gravitational and electroweak scales.Comment: 12 pages, 2 figures; v2, PRD version, comments and references adde
    • …
    corecore