29 research outputs found

    Inhibition of 17α-hydroxylase/C17,20 lyase reduces gating deficits consequent to dopaminergic activation

    Get PDF
    Cogent evidence points to the involvement of neurosteroids in the regulation of dopamine (DA) neurotransmission and signaling, yet the neurobiological bases of this link remain poorly understood. We previously showed that inhibition of 5α-reductase (5αR), a key neurosteroidogenic enzyme, attenuates the sensorimotor gating deficits induced by DA receptor activation, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. To extend these findings, the present study was aimed at the assessment of the role of other key neurosteroidogenic enzymes in PPI, such as 17α-hydroxylase/C17,20 lyase (CYP17A1), 3α- and 3β-hydroxysteroid dehydrogenase (HSD), in Sprague-Dawley rats. The PPI deficits induced by the DAergic non-selective agonist apomorphine (APO, 0.25 mg/kg, SC) were dose-dependently attenuated by the selective CYP17A1 inhibitor abiraterone (ABI, 10-50 mg/kg, IP) in a fashion akin to that of the 5αR inhibitor finasteride (FIN, 100 mg/kg, IP). These systemic effects were reproduced by intracerebroventricular injection of ABI (1 μg/1 μl), suggesting the involvement of brain CYP17A1 in PPI regulation. Conversely, the PPI disruption induced by APO was not significantly affected by the 3α- and 3β-HSD inhibitors indomethacin and trilostane. Given that CYP17A1 catalyzes androgen synthesis, we also tested the impact on PPI of the androgen receptor (AR) antagonist flutamide (10 mg/kg, IP). However, this agent failed to reverse APO-induced PPI deficits; furthermore, AR endogenous ligands testosterone and dihydrotestosterone failed to disrupt PPI. Collectively, these data highlight CYP17A1 as a novel target for antipsychotic-like action, and suggest that the DAergic regulation of PPI is modulated by androgenic neurosteroids, through AR-unrelated mechanisms

    Positive allosteric modulation of GABAB receptors ameliorates sensorimotor gating in rodent models

    Get PDF
    This is the peer reviewed version of the following article: Frau, R., Bini, V., Pillolla, G., Malherbe, P., Pardu, A., Thomas, A. W., Devoto, P. and Bortolato, M. (2014), Positive Allosteric Modulation of GABAB Receptors Ameliorates Sensorimotor Gating in Rodent Models. CNS Neurosci Ther, 20: 679–684. doi:10.1111/cns.12261, which has been published in final form at http://doi.org/10.1111/cns.12261. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.BACKGROUND: Converging evidence points to the involvement of γ-amino-butyric acid B receptors (GABABRs) in the regulation of information processing. We previously showed that GABABR agonists exhibit antipsychotic-like properties in rodent models of sensorimotor gating deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. The therapeutic potential of these agents, however, is limited by their neuromuscular side effects; thus, in the present study we analyzed whether rac-BHFF, a potent GABABR positive allosteric modulator (PAM), could counter spontaneous and pharmacologically induced PPI deficits across various rodent models. METHODS: We tested the antipsychotic effects of rac-BHFF on the PPI deficits caused by the N-methyl-D-aspartate glutamate receptor antagonist dizocilpine, in Sprague-Dawley rats and C57BL/6 mice. Furthermore, we verified whether rac-BHFF ameliorated the spontaneous PPI impairments in DBA/2J mice. RESULTS: rac-BHFF dose-dependently countered the PPI deficits across all three models, in a fashion akin to the GABABR agonist baclofen and the atypical antipsychotic clozapine; in contrast with these compounds, however, rac-BHFF did not affect startle magnitude. CONCLUSIONS: The present data further support the implication of GABABRs in the modulation of sensorimotor gating, and point to their PAMs as a novel promising tool for antipsychotic treatment, with fewer side effects than GABABR agonists

    Effect of acute administration of Pistacia lentiscus L. essential oil on rat cerebral cortex following transient bilateral common carotid artery occlusion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ischemia/reperfusion leads to inflammation and oxidative stress which damages membrane highly polyunsaturated fatty acids (HPUFAs) and eventually induces neuronal death. This study evaluates the effect of the administration of <it>Pistacia lentiscus </it>L. essential oil (E.O.), a mixture of terpenes and sesquiterpenes, on modifications of fatty acid profile and endocannabinoid (eCB) congener concentrations induced by transient bilateral common carotid artery occlusion (BCCAO) in the rat frontal cortex and plasma.</p> <p>Methods</p> <p>Adult Wistar rats underwent BCCAO for 20 min followed by 30 min reperfusion (BCCAO/R). 6 hours before surgery, rats, randomly assigned to four groups, were gavaged either with E.O. (200 mg/0.45 ml of sunflower oil as vehicle) or with the vehicle alone.</p> <p>Results</p> <p>BCCAO/R triggered in frontal cortex a decrease of docosahexaenoic acid (DHA), the membrane highly polyunsaturated fatty acid most susceptible to oxidation. Pre-treatment with E.O. prevented this change and led further to decreased levels of the enzyme cyclooxygenase-2 (COX-2), as assessed by Western Blot. In plasma, only after BCCAO/R, E.O. administration increased both the ratio of DHA-to-its precursor, eicosapentaenoic acid (EPA), and levels of palmytoylethanolamide (PEA) and oleoylethanolamide (OEA).</p> <p>Conclusions</p> <p>Acute treatment with E.O. before BCCAO/R elicits changes both in the frontal cortex, where the BCCAO/R-induced decrease of DHA is apparently prevented and COX-2 expression decreases, and in plasma, where PEA and OEA levels and DHA biosynthesis increase. It is suggested that the increase of PEA and OEA plasma levels may induce DHA biosynthesis via peroxisome proliferator-activated receptor (PPAR) alpha activation, protecting brain tissue from ischemia/reperfusion injury.</p

    PPAR-Alpha Agonists as Novel Antiepileptic Drugs: Preclinical Findings

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) are involved in seizure mechanisms. Hence, nocturnal frontal lobe epilepsy was the first idiopathic epilepsy linked with specific mutations in a4 or b2 nAChR subunit genes. These mutations confer gain of function to nAChRs by increasing sensitivity toward acetylcholine. Consistently, nicotine elicits seizures through nAChRs and mimics the excessive nAChR activation observed in animal models of the disease. Treatments aimed at reducing nicotinic inputs are sought as therapies for epilepsies where these receptors contribute to neuronal excitation and synchronization. Previous studies demonstrated that peroxisome proliferator-activated receptors-a (PPARa), nuclear receptor transcription factors, suppress nicotine-induced behavioral and electrophysiological effects by modulating nAChRs containing b2 subunits. On these bases, we tested whether PPARa agonists were protective against nicotine-induced seizures. To this aim we utilized behavioral and electroencephalographic (EEG) experiments in C57BL/J6 mice and in vitro patch clamp recordings from mice and rats. Convulsive doses of nicotine evoked severe seizures and bursts of spike-waves discharges in ,100% of mice. A single dose of the synthetic PPARa agonist WY14643 (WY, 80 mg/kg, i.p.) or chronic administration of fenofibrate, clinically available for lipid metabolism disorders, in the diet (0.2%) for 14 days significantly reduced or abolished behavioral and EEG expressions of nicotine-induced seizures. Acute WY effects were reverted by the PPARa antagonist MK886 (3 mg/kg, i.p.). Since neocortical networks are crucial in the generation of ictal activity and synchrony, we performed patch clamp recordings of spontaneous inhibitory postsynaptic currents (sIPSCs) from frontal cortex layer II/III pyramidal neurons. We found that both acute and chronic treatment with PPARa agonists abolished nicotine-induced sIPSC increases. PPARa within the CNS are key regulators of neuronal activity through modulation of nAChRs. These effects might be therapeutically exploited for idiopathic or genetically determined forms of epilepsy where nAChRs play a major role

    Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study

    No full text
    The nucleus accumbens (NAc) represents a critical site for the rewarding properties of diverse classes of drugs of abuse. Glutamatergic afferents to the NAc are involved in the actions of psychostimulants and opioids, while the potentiation of dopaminergic neurotransmission in the NAc is a common feature of abused drugs, including cannabinoids. Cannabinoid receptors (CB1) are densely expressed in regions that provide excitatory innervation to the NAc, such as the amygdala, the cortex and the hippocampus. Recent in vitro evidence suggests that indeed cannabinoids modulate glutamatergic synapses in the NAc. In this study we recorded extracellularly from neurons in the shell of the NAc which responded to the stimulation of the baso-lateral amygdala (BLA) or the medial prefrontal cortex (PFC) in urethane anaesthetized rats. BLA or PFC stimulation induced generation of action potentials in NAc neurons. This excitatory effect was strongly inhibited by the synthetic cannabinoid agonists WIN 55212,2 (0.062-0.25 mg/kg, i.v.) and HU-210 (0.125-0.25 mg/kg, i.v.) or the psychoactive principle of Cannabis delta(9)-tetrahydrocannabinol (1.0 mg/kg, i.v.). Neither the D1 or D2 dopamine receptor antagonists (SCH23390 0.5-1.0 mg/kg, sulpiride 5-10 mg/kg, i.v.) or the opioid antagonist naloxone (1.0 mg/kg, i.v.) were able to reverse the action of cannabinoids, while the selective CB1 receptor antagonist/reverse agonist SR141716A (0.5 mg/kg, i.v.) fully suppressed the action of cannabinoid agonists, whereas per se had no significant effect. These results provide evidence that cannabinoids, in common with other drugs of abuse, in vivo strongly inhibit the excitability of neurons in the shell of the NAc

    Alcohol inhibits spontaneous activity of basolateral amygdala projection neurons in the rat: Involvement of the endocannabinoid system

    No full text
    Background: A large body of evidence indicates that the limbic system is involved in the neural processing underlying drug addiction. Among limbic regions, the basolateral nucleus of amygdala (BLA) is implicated in some aspects of the neurobiological mechanisms of drugs of abuse, including alcohol and cannabinoids. It is recently emerging that the endocannabinoid system is involved in many pharmacological and behavioral effects of alcohol. The BLA possesses a very high density of CB1 cannabinoid receptors, and endocannabinoids modulate forms of synaptic plasticity in this region. The aims of our study were first to investigate in vivo the sensitivity of BLA pyramidal neurons to alcohol and second to determine the role of the endocannabinoid system in the acute effects of alcohol. Methods: We utilized extracellular single cell recordings in urethane anesthetized rats from BLA principal neurons, antidromically identified from their projection site in the nucleus accumbens. Results: Alcohol (0.25 to 2.0 g/kg i.v.) induced a marked decrease in the spontaneous firing rate of BLA projecting neurons (51.1 ± 16% of baseline at 0.5 g/kg alcohol, p < 0.0001). The involvement of the endogenous cannabinoid system was investigated by administering the CB1 receptor antagonist SR141716A (rimonabant, SR) (1.0 mg/kg i.v.) before alcohol. SR per se did not significantly affect firing rate of BLA neurons, but it prevented the inhibition produced by alcohol (98 ± 18% of baseline firing at 0.5 g/kg alcohol, p < 0.01). Then, we studied the actions of alcohol following a chronic treatment with the CB1 agonist WIN55212-2 (WIN). Animals were administered WIN for 6.5 days (2.0 mg/kg, i.p. twice daily) and alcohol dose-response curves were carried out on firing rate of BLA neurons 24 hours following the last injection of the cannabinoid agonist. In WIN-treated animals the inhibitory effect of alcohol was significantly reduced as compared with controls (95 ± 16% of baseline firing at 0.5 g/kg, p < 0.05). Conclusions: Our results provide evidence of the involvement of the endocannabinoid system in the effects of alcohol on BLA projection neurons. They also further point to the endocannabinoid system as a possible molecular target in the treatment of alcoholis

    Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors

    No full text
    The endogenous cannabinoid system has been shown to play a crucial role in controlling neuronal excitability and synaptic transmission. In this study we investigated the effects of a cannabinoid receptor (CB-R) agonist WIN 55,212-2 (WIN) on excitatory synaptic transmission in the rat ventral tegmental area (VTA). Whole-cell patch clamp recordings were performed from VTA dopamine (DA) neurons in an in vitro slice preparation. WIN reduced both NMDA and AMPA EPSCs, as well as miniature EPSCs (mEPSCs), and increased the paired-pulse ratio, indicating a presynaptic locus of its action. We also found that WIN-induced effects were dose-dependent and mimicked by the CB1-R agonist HU210. Furthermore, two CB1-R antagonists, AM281 and SR141716A, blocked WIN-induced effects, suggesting that WIN modulates excitatory synaptic transmission via activation of CB1-Rs. Our additional finding that both AM281 and SR141716A per se increased NMDA EPSCs suggests that endogenous cannabinoids, released from depolarized postsynaptic neurons, might act retrogradely on presynaptic CB1-Rs to suppress glutamate release. Hence, we report that a type of synaptic modulation, previously termed depolarization-induced suppression of excitation (DSE), is present also in the VTA as a calcium-dependent phenomenon, blocked by both AM281 and SR141716A, and occluded by WIN. Importantly, DSE was partially blocked by the D2DA antagonist eticlopride and enhanced by the D 2DA agonist quinpirole without changing the presynaptic cannabinoid sensitivity. These results indicate that the two pathways work in a cooperative manner to release endocannabinoids in the VTA, where they play a role as retrograde messengers for DSE via CB1-Rs

    Inhibition of 5α-reductase attenuates behavioral effects of D1-, but not D2-like receptor agonists in C57BL/6 mice

    No full text
    Converging lines of evidence point to the involvement of neurosteroids in the regulation of dopamine (DA) neurotransmission and signaling, yet the neurobiological bases of this link remain poorly understood. We previously showed that inhibition of steroid 5α-reductase (5αR), the key rate-limiting enzyme in neurosteroidogenesis, attenuates the behavioral effects of non-selective DA receptor agonists in rats, including stereotyped responses and sensorimotor gating deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. Since previous findings suggested that the role of DA D(1)- and D(2)-like receptor families in behavioral regulation may exhibit broad interspecies and interstrain variations, we assessed the impact of 5αR blockade on the behavioral effects of DAergic agonists in C57BL/6 mice. The prototypical 5αR inhibitor finasteride (FIN; 25-50 mg/kg, intraperitoneally, IP) dose-dependently countered the PPI deficits and the enhancement of rearing responses induced by the full D(1)-like receptor agonist SKF-82958 (0.3 mg/kg, IP); however, FIN did not significantly affect the hyperlocomotive and startle-attenuating effects of SKF-82958. Whereas the D(2)-like receptor agonist quinpirole (QUIN; 0.5 mg/kg, IP) did not induce significant changes in PPI, the combination of this agent and FIN surprisingly produced marked gating and startle deficits. In contrast with previous data on rats, FIN did not affect the reductions of startle reflex and PPI produced by the non-selective DAergic agonist apomorphine (APO; 0.5 mg/kg, IP). These findings collectively indicate that, in C57BL/6 mice, 5αR differentially modulates the effects of D(1)- and D(2)-like receptor agonists in behavioral regulation
    corecore