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Abstract

Background—Converging evidence points to the involvement of γ-amino-butyric acid B

receptors (GABABRs) in the regulation of information processing. We previously showed that

GABABR agonists exhibit antipsychotic-like properties in rodent models of sensorimotor gating

deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. The therapeutic

potential of these agents, however, is limited by their neuromuscular side effects; thus, in the

present study we analyzed whether rac-BHFF, a potent GABABR positive allosteric modulator

(PAM), could counter spontaneous and pharmacologically induced PPI deficits across various

rodent models.

Methods—We tested the antipsychotic effects of rac-BHFF on the PPI deficits caused by the N-

methyl-D-aspartate glutamate receptor antagonist dizocilpine, in Sprague-Dawley rats and

C57BL/6 mice. Furthermore, we verified whether rac-BHFF ameliorated the spontaneous PPI

impairments in DBA/2J mice.

Results—rac-BHFF dose-dependently countered the PPI deficits across all three models, in a

fashion akin to the GABABR agonist baclofen and the atypical antipsychotic clozapine; in contrast

with these compounds, however, rac-BHFF did not affect startle magnitude.

Corresponding author: Marco Bortolato, MD PhD, Dept. of Pharmacology and Toxicology, School of Pharmacy, University of
Kansas, 1251 Wescoe Hall Dr., Rm 5040, Lawrence, KS 66044, Tel.:785-864-1936; Fax: 785-864-5219, bortolato@ku.edu.
Roberto Frau and Valentina Bini contributed equally to this work

No conflicts of interest were declared by any authors. None of the institutions had any further role in study design; in the collection,
analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Conflicts of interest: Pari Malherbe and Andrew W Thomas are employees of Hoffmann-La Roche.

NIH Public Access
Author Manuscript
CNS Neurosci Ther. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
CNS Neurosci Ther. 2014 July ; 20(7): 679–684. doi:10.1111/cns.12261.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213423421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Conclusions—The present data further support the implication of GABABRs in the modulation

of sensorimotor gating, and point to their PAMs as a novel promising tool for antipsychotic

treatment, with fewer side effects than GABABR agonists.
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Introduction

Ample evidence shows that γ-amino-butyric acid (GABA), the main inhibitory

neurotransmitter in the CNS, is implicated in schizophrenia pathogenesis [1-3]. In particular,

several clinical investigations have documented deficits in the expression of the

metabotropic GABAB receptors (GABABRs) in the cortex and hippocampus of

schizophrenia patients [4-6]. The mechanisms supporting the involvement of GABABRs in

psychotic disorders remain elusive; however, recent findings suggest that the dysfunction of

this receptors in the cortex leads to alterations of glutamate signaling and excitatory/

inhibitory imbalances [7-8], which contribute to the aberrant information processing and

cognitive deficits in schizophrenia [9-10].

In keeping with this background, our group and others showed that the prototypical

GABABR agonist baclofen (BAC) countered the disruption of prepulse inhibition (PPI) of

the acoustic startle reflex produced by the blockade of N-methyl-D-aspartate glutamate

receptors (NMDARs) in rats [11-12] and mice [13]. This endophenotype is widely regarded

as a heuristic index of sensorimotor gating, the cognitive function that enables pre-

attentional information filtering and governs the detection of perceptual salience [14];

notably, PPI deficits are featured in schizophrenia and related neuropsychiatric disorders

[15-16].

In subsequent studies, we found that BAC rescued the marked deficits in sensorimotor

gating present in DBA/2J mice [17], a strain that features antipsychotic-sensitive PPI deficits

[18].

These findings collectively highlight GABABR as a highly promising target for

antipsychotic treatment. Indeed, Daskalakis and George [19] hypothesized that GABABR

activation may be the mechanism underlying the unique ability of the antipsychotic agent

clozapine (CLO) in reducing the severity of negative symptoms in schizophrenia. While

BAC monotherapy does not elicit significant antipsychotic effects [20], preliminary studies

have documented its therapeutic effectiveness as an adjunctive treatment [21-22]. The

therapeutic employment of BAC in schizophrenia is limited by several factors, including its

poor ability to cross the blood-brain barrier, its short latency of action [23], as well as its

potentially severe side effects, including muscle flaccidity, sedation, loss of reflexes, and, at

higher dosages, bradycardia, respiratory depression, hypothermia and coma [24]. A new

class of GABABR positive allosteric modulators (PAMs) has been recently developed [25]

to harness the therapeutic potential of GABABR activation without eliciting the side effects

of BAC. The mechanism of these compounds is based on the enhancement of the effects of
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GABA on GABABRs [26-27]. One of the most potent drugs in this family, rac-BHFF

[(R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one] [25], has been

shown to produce behavioral effects without altering motor coordination and nervous

reflexes, and with a much better safety index than GABABR agonists [25; 28-31]. Here we

show that rac-BHFF elicited antipsychotic-like effects on the pharmacologically induced

and spontaneous gating deficits in rodent models, as assessed through the paradigm of the

prepulse inhibition (PPI) of the acoustic startle reflex; although these effects were

comparable to those of BAC and CLO, rac-BHFF did not induce the same alterations of

startle reflex associated with these drugs.

Materials and methods

Animals

We used behaviorally-naïve male Sprague-Dawley rats weighing between 250-300 g, and

male DBA/2J and C57BL/6J between 18-24 g. Animals were housed 4/cage in a room

maintained at a temperature of 22°C and kept under an artificial 12/12-h light/dark cycle.

Animals were given ad libitum access to food and water and handled for 5 min daily to

minimize experimental stress. All experimental procedures were approved by the ethical

committee of the University of Cagliari and carried out in strict accordance with the

guidelines for experimental animals care [European Economic Community (86/609; DL

27/01/92, number 110)].

Drugs

rac-BHFF (Hoffmann-La Roche, Basel, Switzerland) was suspended in a mixture containing

Cremophor EL, 1,2-propanediol and distilled water (4:1:30 ratio) and administered

intragastrically (per os, PO) at an injection volume of 10 ml/kg. The NMDAR antagonist

dizocilpine (DIZ; Sigma-Aldrich, Milan, Italy) was dissolved in 0.9% saline and

administered subcutaneously (SC). BAC (Tocris Cookson, Bristol, UK) was dissolved in

saline and administered intraperitoneally (IP). CLO (Sigma-Aldrich) was dissolved in a

single drop of 1 N HCl and diluted with saline; the pH was adjusted to 7 with NaHCO3.

Parenteral injections were administered in injection volumes of 1 ml/kg for rats and 10ml/kg

for mice.

Experimental procedures

Acoustic startle reflex and PPI were measured in 4 sound-attenuated chambers (Med

Associates, St Albans, USA) with fan ventilation. Each chamber consisted of a Plexiglas

cylinder (9 cm diameter for rats and 3.2 cm diameter for mice) mounted on a piezoelectric

accelerometric platform and connected to an analogue-digital converter. Background noise

and acoustic bursts were conveyed by two separate speakers, properly spaced from the

cylinder so as to produce a variation of sound within 1 dB across it. Both speakers and

startle cylinders were connected to a main PC computer, which detected and analyzed all

chamber variables by means of specific software. Before every testing session, acoustic

stimuli and mechanical responses were calibrated via specific devices supplied by Med

Associates.
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The experimental procedure was based on the protocols described in Frau et al [32]. Briefly,

three days before the experiment, animals went through a brief baseline startle session.

Animals were exposed to 70 dB background white noise for a 5 min acclimation, followed

by presentation to a randomized sequence of twelve 40 ms acoustic pulses of 115 dB,

interposed with three trials in which an 82 dB prepulse preceded the 115 dB pulse by 100

ms. Subsequently, treatment groups were established so that average startle responses and %

PPI (calculated as: 100-[(mean startle amplitude for prepulse+pulse trials/mean startle

amplitude for pulse alone trials) × 100]) were equivalent across groups. On the testing day,

each animal was placed in the cylinder for a 5-min acclimation to 70 dB background white

noise, which continued for the remainder of the entire session. The session consisted of three

consecutive blocks of trials. Unlike the first and the third block, during which animals were

presented with only five pulse-alone trials of 115 dB, the second block displayed a

pseudorandom sequence of 50 trials, including 12 pulse-alone trials, 30 trials of pulse

preceded by 74, 78 or 86 dB prepulses (ten for each level of prepulse loudness) and eight no

stimulus trials, where only background noise was delivered. Intertrial intervals (ITI) were

selected randomly between 10 and 15 s. The duration of pulses and prepulses were 40 and

20 ms, respectively. Prepulse-pulse delay amounted to 100 ms.

Data analysis

Normality and homoscedasticity of data were verified by Kolmogorov-Smirnov and

Bartlett's tests. Data were compared across groups by one-way or two-way ANOVAs, as

appropriate. As no interaction between prepulse levels and treatment were found in the

statistical analysis, %PPI values were collapsed across prepulse intensity to represent

average %PPI. Post-hoc analyses were performed using Tukey's test with Spjøtvoll-Stoline

correction. Significance threshold was set at 0.05.

Results

Effects of rac-BHFF on the PPI deficits induced by DIZ in Sprague Dawley rats

In the first experiment, we investigated whether rac-BHFF pretreatment could prevent the

PPI disruption induced by the NMDAR antagonist DIZ in Sprague Dawley rats. Animals

were pretreated with either rac-BHFF (25-50 mg/kg, PO) or vehicle (control) and sixty

minutes later were given an injection of either DIZ (0.1 mg/kg, SC) or saline (control).

Animals were subjected to PPI testing five min after the last treatment.

No significant differences in startle amplitude were found between pretreatment-treatment

groups (Fig. 1A) [Interaction: F2,47=0.10; NS]. Conversely, we found a significant

pretreatment × treatment interaction (Fig. 1B) [Interaction: F2,47=4.62, P<0.05] between

groups. Post-hoc analyses revealed that the highest dose of rac-BHFF significantly reversed

DIZ-induced PPI deficits (P<0.05; Tukey's test).

In contrast, BAC (5 mg/kg, IP) produced a significant reduction in startle amplitude [Main

effect: F1,37=9.44; P<0.01] (Fig.1A); furthermore, it significantly prevented the PPI

impairments caused by DIZ [Interaction: F1,37=4.89; P<0.05; P<0.05 for vehicle-DIZ vs

BAC-DIZ comparisons] (Fig. 1B). As expected, CLO (5 mg/kg, IP) elicited similar effects,
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with a general reduction of startle magnitude [Main effect: F1,37=7.17; P<0.05] (Fig.1A) and

a significant reversal of DIZ-mediated PPI deficits [Interaction: F1,37=5.27; P<0.05; P<0.05

for vehicle-DIZ vs CLO-DIZ comparisons] (Fig. 1B).

Effects of rac-BHFF on the PPI deficits induced by DIZ in C57BL/6J mice

Next, we studied whether rac-BHFF (6.25-12.5 mg/kg, PO) exhibited antipsychotic-like

effects in C57BL/6J mice treated with DIZ (0.3mg/kg, IP). In parallel with our results on

rats, no differences were found between groups for startle amplitude (Fig. 2A) [Interaction:

F2,59 = 1.99, NS]; however, we detected a marked pretreatment × treatment interaction (Fig.

2B) [F2,52=5.32, P<0.01]. Specifically, the PPI-disruptive effects of DIZ (P<0.01) were

prevented by rac-BHFF treatment at a dose of 12.5mg/kg (P<0.001; Tukey's test). As

previously shown [17], BAC (5 mg/kg, IP) did not affect startle amplitude in C57BL/6J

mice (Fig.2A); notably, the PPI analysis indicated main effects for both pre-treatment

(BAC) [F1,41=7.00; P<0.05] and treatment (DIZ) [F1,41=8.13; P<0.01], but no significant

interactions [F1,41=2.32; NS] (Fig. 2B). Conversely, CLO (5 mg/kg, IP) reduced startle

magnitude [Main effect: F1,41=7.84; P<0.01] (Fig.2A) and significantly countered the PPI

disruption induced by DIZ [Interaction: F1,41=4.81; P<0.05; P<0.05 for vehicle-DIZ vs

CLO-DIZ comparisons] (Fig. 2B).

Effects of rac-BHFF on the spontaneous PPI deficit displayed by DBA/2J strain of mice

In the last experiment we evaluated the intrinsic effects of rac-BHFF on the spontaneous

low PPI baseline displayed by DBA/2J mice. Animals were treated with VEH or rac-BHFF

(6.25-12.5 mg/kg, PO) and subjected to PPI sessions sixty minutes later. The GABABR

PAM did not elicit any changes in startle amplitude at any dose (Fig. 3A) [F2,35=0.99, NS].

In contrast, low PPI in DBA mice was countered by rac-BHFF [F2,35=4.63 P<0.05)],

specifically at the dose of 12.5 mg/kg (P<0.05; Tukey's test) (Fig. 3B). BAC and CLO failed

to affect startle amplitude, but significantly countered DIZ-induced PPI deficits [BAC:

F1,20=10.28; P<0.01; CLO: F1,20=12.36; P<0.01] (Fig. 3B).

Discussion

The results of this study showed that rac-BHFF, a potent GABABR PAM, dose-dependently

reversed DIZ-induced PPI deficits in both SD rats and C57BL/6J mice, and rescued the PPI

impairments displayed by DBA/2J mice. Overall, these effects were akin to those elicited by

the GABABR agonist BAC and the atypical antipsychotic CLO, and substantially confirm

previous findings by our group and others [11-13; 18] on the therapeutic potential of

GABABR activators on sensorimotor gating deficits induced by NMDAR blockade.

Notably, in contrast with BAC and CLO, rac-BHFF did not significantly reduce the

magnitude of startle reflex, irrespective of the animal model and dose. It is also worth

mentioning that the same doses of rac-BHFF that elicited antipsychotic-like effects in our

models also failed to affect locomotor responses or other spontaneous behavioral

manifestations in the home cage [unpublished observations]. Taken together, our findings

complement previous preclinical data on the beneficial effects of GABABR PAMs [33-34]

and highlight this class of compound as a novel putative avenue for antipsychotic therapy

with fewer side effects than GABABR antagonists.
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One of the key problems in the potential employment of BAC as an add-on treatment lies in

the exacerbation of locomotor impairments and sedative effects caused by dopamine D2

receptor antagonism; indeed, in preliminary studies we observed that the association of BAC

and antipsychotic drugs, such as CLO and haloperidol, was not suitable for behavioral

studies in rodents, in view of the serious impairments in neuromuscular coordination

produced by such combinations. From this perspective, GABABR PAMs may afford a safer

and tolerable alternative as antipsychotic adjunctive therapies for schizophrenia or related

disorders. Future clinical and preclinical studies are warranted to evaluate this interesting

perspective and validate the potential usefulness of rac-BHFF and similar agents in the

treatment of psychoses.

The PPI of the acoustic response refers to the reduction in the response amplitude to a

sudden and intense startling stimulus [pulse], when it is immediately preceded by a weaker

non-startling pre-stimulus [35]. This phenomenon is widely regarded as a dependable index

of sensorimotor gating integrity, and is typically impaired in schizophrenia [17]. In rodents,

DIZ and other NMDAR antagonists produce marked PPI deficits, which are sensitive to

CLO and other atypical, but not typical, antipsychotics [36-38]. The effects of NMDAR

antagonists on sensorimotor gating are in line with the well-known psychotomimetic effects

of these drugs [39] and other alterations of informational processing [40].

Although the mechanisms by which DIZ and other NMDAR blockers impair PPI remain

unclear, several studies point to a key role of the prefrontal cortex (PFC) and hippocampal

regions in these phenomena [12; 41]. These areas are characterized by a large density of pre-

and postsynaptic GABABRs, which finely regulate basal glutamatergic and dopaminergic

functions [42]. Accordingly, disturbances in GABABR expression or function may affect

informational salience by altering the inhibitory/excitatory balance of several

neurotransmitter systems in corticolimbic regions.

It has been reported that MK-801 and PCP stimulate cortical glutamate release in PFC and

hippocampus [43]. In this scenario, rac-BHFF could counteract the disinhibition of neuronal

activity produced by exaggerated NMDAR stimulation in these areas or, alternatively,

modulate distinct forebrain pathways under the control of non-NMDA glutamatergic

receptors, such as AMPA and Kainate [44]. Alternatively, rac-BHFF may counter DIZ-

mediated PPI-deficits by acting on the pallidotegmental nucleus (PTn). This predominantly

GABAergic area exhibits high levels of GABABRs and acts as an interface between the

brainstem and forebrain regions implicated in PPI regulation regions [45]. Accordingly, DIZ

has been recently shown to induce PPI deficits through alterations of the giant neurons of

this region; notably, GABABR activation reversed these impairments by stabilizing the

hyperactivation of these nuclei [13].

rac-BHFF also significantly ameliorated the PPI deficits on DBA/2J mice, a strain

characterized by spontaneous gating impairments sensitive to antipsychotics [19], as well as

other phenotypes reminiscent of schizophrenia symptoms, such as poor exploration as well

as high aggression and social avoidance [46-49].
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The antipsychotic-like actions of rac-BHFF in this murine strain may be related to their

reduced expression of GABABRs and NMDARs across the cortex and hippocampus, in

comparison with C57BL/6J mice [18; 50].

Several limitations in the present study should be acknowledged. First, our analysis was

limited to the behavioral analysis of startle reflex and PPI, but did not include the testing of

other paradigms with great relevance to the negative and cognitive symptoms of

schizophrenia-spectrum disorders, such as object recognition and social interaction test

[51-52]. Second, we did not evaluate the effects of rac-BHFF in animal models with high

translational validity with respect to schizophrenia, such as DISC1- and neuregulin1-

deficient mice, or rodents subjected to chronic administration of DIZ or other NMDAR

antagonists, which may have better simulated the neurobiological impairments associated

with schizophrenia [53-58]. Third, our research did not encompass testing of GABAB

negative allosteric modulators or antagonists, which may be essential for a full definition of

the role of these receptors in schizophrenia-related endophenotypes.

Although further investigations are needed to address these limitations, our findings extend

and support for the role of GABABRs in the pathophysiology of psychiatric disorders

associated with sensorimotor gating disturbances, and point to PAMs of these targets as

interesting therapeutic tools to treat cognitive deficits and negative symptoms in

schizophrenia.
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Figure 1.
Effects of rac-BHFF on the mean startle amplitude (A) and prepulse inhibition deficits (B)

induced by dizocilpine (DIZ, 0.1 mg/kg, SC) in Sprague Dawley rats, compared to baclofen

and clozapine. All doses are given in milligrams per kilogram and are indicated below the

horizontal axis. Values represent mean ± SEM for each treatment. Percent prepulse

inhibition (PPI) values were collapsed across all three prepulse intensities (4, 8, and 16 dB

above 70 dB background noise). For all experimental groups, n=8-12. SAL, saline. ***,

P<0.001, compared to VEH+SAL group; #, P<0.05, compared to VEH+DIZ group. For

further details, see text.
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Figure 2.
Effects of rac-BHFF on the mean startle amplitude (A) and spontaneously low prepulse

inhibition deficits (B) induced by dizocilpine (DIZ, 0.3 mg/kg, IP) in C57BL/6J mice,

compared to baclofen and clozapine. All doses are given in milligrams per kilogram and are

indicated below the horizontal axis. Values represent mean ± SEM for each treatment.

Percent prepulse inhibition (PPI) values were collapsed across all three prepulse intensities

(4, 8, and 16 dB above 70 dB background noise). For all experimental groups, n=8-12. SAL,

saline. **, P<0.01, compared to VEH+SAL group; ###, P<0.001, #, P<0.05, compared to

VEH+DIZ group. For further details, see text.
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Figure 3.
Effects of rac-BHFF on the mean startle amplitude (A) and spontaneous prepulse inhibition

deficits (B) displayed by DBA/2J mice, compared to baclofen and clozapine. All doses are

given in milligrams per kilogram and are indicated below the horizontal axis. Values

represent mean ± SEM for each treatment. Percent prepulse inhibition (PPI) values were

collapsed across all three prepulse intensities (4, 8, and 16 dB above 70 dB background

noise). For all experimental groups, n=8-10. **, P<0.01, compared to VEH group. For

further details, see text.
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