9 research outputs found

    Mineralogical effects on the dense medium separation of low grade nickel sulfide ore

    Get PDF
    Dense medium separation (DMS) is a method often used to upgrade base metal sulfide (BMS) ores before their main processing stage, with varying results achieved for different ore types. The process makes use of the density differences between the BMS minerals and the lower density silicate/carbonate gangue minerals, using a separating medium of density between the two ore components. The separation is accelerated using a dense medium cyclone (DMC) to form two products: overflow (tailings) and underflow (concentrate). The purpose of DMS is to reject large quantities of gangue upfront, resulting in reduced time, energy and costs associated with processes such as milling and flotation. Preconcentration of ores using physical methods such as DMS is becoming an important consideration as lower grade ores are mined, to increase the feasibility of mining such ores. Two nickel sulfide deposits were chosen as case studies in order to understand differences in DMS efficiency for different ores. The first is the Main Mineralised Zone (MMZ) of the Nkomati Nickel deposit in Mpumalanga, South Africa, which is part of the Uitkomst Complex. The Phoenix deposit is also considered, and forms part of the Tati greenstone belt in eastern Botswana. Both deposits are magmatic Cu-Ni-PGE (platinum group element) deposits with similar sulfide mineralogy and pentlandite as the main nickel host. A process mineralogy approach was used to evaluate samples of both ores, describing the differences in the mineralogical properties within the overflow and underflow of each ore in order to understand the extent to which individual properties affect the separation

    Mineralogical Factors Affecting the Dense Medium Separation of Nickel Sulfide Ores

    No full text
    Dense medium separation (DMS) is often used to reject a large portion of gangue material upfront to create cost and energy savings during processing. As lower-grade ores with complex mineralogy are being increasingly exploited, the properties of the gangue minerals begin to play a more important role in the upgrading of the ore. It is therefore important to understand these mineralogical factors to be able to select suitable processing routes for specific ore types. Two nickel sulfide deposits in southern Africa were chosen as case studies to understand differences in DMS efficiency when applied to different ores: Ore A and Ore B. Both ores showed nickel upgrades using DMS and the products were then characterized using QEMSCAN, with the aid of X-ray diffraction and electron probe microanalysis. Overall, particle density remains the main control on the separation, followed by sulfide texture, with massive and net-textured sulfides having larger grain sizes and therefore better liberation than disseminated sulfides. In addition to the concentration of sulfides, primary and secondary silicate minerals are separated by their density differences, which can affect the recovery of finely disseminated sulfides associated with them. Particle size is also important in DMS, with material near the cut-point density separating on size rather than density. The understanding of the mineralogical properties affecting DMS can aid in the prediction of the suitability of DMS for different ore types

    Mineralogical Factors Affecting the Dense Medium Separation of Nickel Sulfide Ores

    No full text
    Dense medium separation (DMS) is often used to reject a large portion of gangue material upfront to create cost and energy savings during processing. As lower-grade ores with complex mineralogy are being increasingly exploited, the properties of the gangue minerals begin to play a more important role in the upgrading of the ore. It is therefore important to understand these mineralogical factors to be able to select suitable processing routes for specific ore types. Two nickel sulfide deposits in southern Africa were chosen as case studies to understand differences in DMS efficiency when applied to different ores: Ore A and Ore B. Both ores showed nickel upgrades using DMS and the products were then characterized using QEMSCAN, with the aid of X-ray diffraction and electron probe microanalysis. Overall, particle density remains the main control on the separation, followed by sulfide texture, with massive and net-textured sulfides having larger grain sizes and therefore better liberation than disseminated sulfides. In addition to the concentration of sulfides, primary and secondary silicate minerals are separated by their density differences, which can affect the recovery of finely disseminated sulfides associated with them. Particle size is also important in DMS, with material near the cut-point density separating on size rather than density. The understanding of the mineralogical properties affecting DMS can aid in the prediction of the suitability of DMS for different ore types

    Association between HIV and subpreputial penile wetness in uncircumcised men in South Africa.

    No full text
    OBJECTIVES: To describe the prevalence and characteristics of subpreputial penile wetness and to investigate the association between current levels of penile wetness and HIV infection. METHODS: Male attenders at a sexually transmitted infections clinic in Durban, South Africa were enrolled and treated for their presenting sexually transmitted infection complaint. They were asked to return after 14 days when a structured questionnaire was administered, and the degree of wetness of the glans penis and coronal sulcus was assessed clinically. RESULTS: Six hundred and fifty men were enrolled, and 488 (75%) returned. Three hundred eighty-six uncircumcised men were included for statistical analysis of whom 215 (56%) were HIV positive. One hundred ninety-six (50.8%) had no penile wetness, and 190 (49.2%) had penile wetness. In the adjusted analysis, penile wetness was associated with younger age, low level of attained education, low income, higher lifetime numbers of sexual partners, and not washing after sex. The prevalence of HIV was greater in those with penile wetness 126 of 190 (66.3%) compared with 90 of 196 (45.9%) with no penile wetness, crude prevalence odds ratio 2.32 (95% confidence interval [CI], 1.54-3.50, P=or<0.001), crude prevalence relative risk 1.44 (95% CI, 1.23-1.63, P=or<0.001), and adjusted for predictors of HIV, confounders and herpes type 2 antibodies, odds ratio 2.38 (95% CI, 1.42-3.97, P=or<0.001), and relative risk 1.46 (95% CI, 1.19-1.68, P=or<0.001). CONCLUSIONS: This is the first study to show an association between subpreputial penile wetness and HIV. Consideration should be given to providing advice about improving penile hygiene in uncircumcised men in areas where HIV is a significant problem. Good penile hygiene should also be promoted at the community level to become a desirable social norm

    The use of digital pcr to improve the application of quantitative molecular diagnostic methods for tuberculosis

    No full text
    Background: Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. Methods: To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. Results: dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. Conclusions: TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB

    The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis

    Get PDF
    CITATION: Devonshire, A. S., et al. 2016. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis. BMC Infectious Diseases, 16:366, doi:10.1186/s12879-016-1696-7.The original publication is available at https://bmcinfectdis.biomedcentral.comBackground: Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. Methods: To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. Results: dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. Conclusions: TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-016-1696-7Publisher's versio

    The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis

    Get PDF
    CITATION: Devonshire, A. S., et al. 2016. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis. BMC Infectious Diseases, 16:366, doi:10.1186/s12879-016-1696-7.The original publication is available at https://bmcinfectdis.biomedcentral.comBackground: Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. Methods: To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. Results: dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. Conclusions: TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-016-1696-7Publisher's versio
    corecore