48 research outputs found

    Low Threshold Parametric Decay Back Scattering Instability in Tokamak ECRH Experiments

    Full text link
    The experimental conditions leading to substantial reduction of backscattering decay instability threshold in ECRH experiments in toroidal devices are analyzed. It is shown that drastic decrease of threshold is provided by non monotonic behavior of plasma density in the vicinity of magnetic island and poloidal magnetic field inhomogeneity making possible localization of ion Bernstein decay waves. The corresponding ion Bernstein wave gain and the parametric decay instability pump power threshold is calculated.Comment: 7 pages, 4 figure

    Electron Bernstein waves in spherical tokamak plasmas with "magnetic wells"

    Full text link
    In addition to traditional regimes with monotonously increasing magnetic field, regimes with "magnetic wells" also occur in spherical tokamaks (STs). The magnetic field profile inversion modifies significantly the whole picture of the wave propagation and damping. Since the magnetic wells may become quite common with further improvement of ST performance, analysis of such configurations is of interest for assessment of EBW plasma heating an CD perspectives. In this paper the basic features of the EBWs propagation and damping for the second cyclotron harmonic in a slab model are considered.Comment: Proc. of 13-th Joint Workshop on ECE and ECRH, N.Novgorod, Russia May 17-20, 2004, 8 pages, 4 fig

    Collisionless absorption, hot electron generation, and energy scaling in intense laser-target interaction

    Full text link
    Among the various attempts to understand collisionless absorption of intense ultrashort laser pulses a variety of models has been invented to describe the laser beam target interaction. In terms of basic physics collisionless absorption is understood now as the interplay of the oscillating laser field with the space charge field produced in the plasma. A first approach to this idea is realized in Brunel's model the essence of which consists in the formation of an oscillating charge cloud in the vacuum in front of the target. The investigation of statistical ensembles of orbits shows that the absorption process is localized at the ion-vacuum interface and in the skin layer: Single electrons enter into resonance with the laser field thereby undergoing a phase shift which causes orbit crossing and braking of Brunel's laminar flow. This anharmonic resonance acts like an attractor for the electrons and leads to the formation of a Maxwellian tail in the electron energy spectrum. Most remarkable results of our investigations are the Brunel-like hot electron distribution at the relativistic threshold; the minimum of absorption at Iλ2≅(0.3−1.2)×1021I\lambda^2 \cong (0.3-1.2)\times 10^{21} W/cm2μ^2\mum2^2, in the plasma target with the electron density of neλ2∼1023n_e \lambda^2\sim 10^{23}cm−3μ^{-3}\mum2;^2; the drastic reduction of the number of hot electrons in this domain and their reappearance in the highly relativistic domain; strong coupling of the fast electron jets with the return current through Cherenkov emission of plasmons. The hot electron energy scaling shows a strong dependence on intensity in the moderately relativistic domain Iλ2≅(1018−1020)I\lambda^2 \cong (10^{18} - 10^{20}) W/cm2μ^2\mum2^2, a scaling in vague accordance with current published estimates in the range Iλ2≅(0.14−3.5)×1021I\lambda^2 \cong (0.14-3.5)\times 10^{21} W/cm2μ^2\mum2^2, and a distinct power increase beyond I=3.5×1021I=3.5\times 10^{21} W/cm2μ^2\mum2^2.Comment: 11 pages, 10 figure

    Spatial and Wavenumber Resolution of Doppler Reflectometry

    Full text link
    Doppler reflectometry spatial and wavenumber resolution is analyzed within the framework of the linear Born approximation in slab plasma model. Explicit expression for its signal backscattering spectrum is obtained in terms of wavenumber and frequency spectra of turbulence which is assumed to be radially statistically inhomogeneous. Scattering efficiency for both back and forward scattering (in radial direction) is introduced and shown to be inverse proportional to the square of radial wavenumber of the probing wave at the fluctuation location thus making the spatial resolution of diagnostics sensitive to density profile. It is shown that in case of forward scattering additional localization can be provided by the antenna diagram. It is demonstrated that in case of backscattering the spatial resolution can be better if the turbulence spectrum at high radial wavenumbers is suppressed. The improvement of Doppler reflectometry data localization by probing beam focusing onto the cut-off is proposed and described. The possibility of Doppler reflectometry data interpretation based on the obtained expressions is shown.Comment: http://stacks.iop.org/0741-3335/46/114

    Particle-in-cell simulations of parametric decay instabilities at the upper hybrid layer of fusion plasmas to determine their primary threshold

    Get PDF
    Parametric decay instabilities (PDIs) are nonlinear processes by which energy from a strong pump wave may be directed into other waves at other frequencies, in particular natural modes of the medium, provided that energy and momentum are conserved. The particle-in-cell (PIC) code EPOCH is used to simulate PDIs in a magnetically confined fusion plasma converting a 105 GHz microwave X-mode pump wave into electrostatic daughter waves at the upper hybrid (UH) layer. Modes associated with the PDIs as well as a linearly converted electron Bernstein wave (EBW) are identified in f- and k-space. The PDI daughter modes are found to agree with experimental observations from ASDEX Upgrade as well as with analytical predictions, showing a nonlinear increase in power above a predicted threshold
    corecore