2,847 research outputs found

    General relativistic models for rotating magnetized neutron stars in conformally flat spacetime

    Get PDF
    The extraordinary energetic activity of magnetars is usually explained in terms of dissipation of a huge internal magnetic field of the order of 10151610^{15-16}G. How such a strong magnetic field can originate during the formation of a neutron star is still subject of active research. An important role can be played by fast rotation: if magnetars are born as millisecond rotators dynamo mechanisms may efficiently amplify the magnetic field inherited from the progenitor star during the collapse. In this case, the combination of rapid rotation and strong magnetic field determine the right physical condition not only for the development of a powerful jet driven explosion, manifesting as a gamma ray burst, but also for a copious gravitational waves emission. Strong magnetic fields are indeed able to induce substantial quadrupolar deformations in the star. In this paper we analyze the joint effect of rotation and magnetization on the structure of a polytropic and axisymmetric neutron star, within the ideal magneto-hydrodynamic regime. We will consider either purely toroidal or purely poloidal magnetic field geometries. Through the sampling of a large parameter space, we generalize previous results in literature, inferring new quantitative relations that allow for a parametrization of the induced deformation, that takes into account also the effects due to the stellar compactness and the current distribution. Finally, in the case of purely poloidal field, we also discuss how different prescriptions on the surface charge distribution (a gauge freedom) modify the properties of the surrounding electrosphere and its physical implications.Comment: 25 pages, 17 figures, 6 tables, accepted for publication in MNRA

    Multiple scattering measurements in laboratory and foggy atmosphere

    Get PDF
    Multiple scattering affects propagation of light beams in turbid media. Backscattering or forward scattering based measurements of atmospheric parameters are influenced by this effect. Although largely studied theoretically, the effect needs measurements in control of situations due to the large variety of situations of practical importance. The results of laboratory measurements pertaining to the transmission of a collimated light beam (Helium-Neon souce, 10 mW) through suspensions of latex spheres in water are presented and a comparison was made with the predictions of calculation in a foggy atmosphere will also be presented

    The role of currents distribution in general relativistic equilibria of magnetized neutron stars

    Get PDF
    Magnetic fields play a critical role in the phenomenology of neutron stars. There is virtually no observable aspect which is not governed by them. Despite this, only recently efforts have been done to model magnetic fields in the correct general relativistic regime, characteristic of these compact objects. In this work we present, for the first time a comprehensive and detailed parameter study, in general relativity, of the role that the current distribution, and the related magnetic field structure, have in determining the precise structure of neutron stars. In particular, we show how the presence of localized currents can modify the field strength at the stellar surface, and we look for general trends, both in terms of energetic properties, and magnetic field configurations. Here we verify that, among other things, for a large class of different current distributions the resulting magnetic configurations are always dominated by the poloidal component of the current.Comment: 14 pages, 13 figures, accepted for publication in MNRA

    Modeling the structure of magnetic fields in Neutron Stars: from the interior to the magnetosphere

    Get PDF
    The phenomenology of the emission of pulsars and magnetars depends dramatically on the structure and properties of their magnetic field. In particular it is believed that the outbursting and flaring activity observed in AXPs and SRGs is strongly related to their internal magnetic field. Recent observations have moreover shown that charges are present in their magnetospheres supporting the idea that their magnetic field is tightly twisted in the vicinity of the star. In principle these objects offer a unique opportunity to investigate physics in a regime beyond what can be obtained in the laboratory. We will discuss the properties of equilibrium models of magnetized neutron stars, and we will show how internal and external currents can be related. These magnetic field configurations will be discussed considering also their stability, relevant for their origin and possibly connected to events like SNe and GRBs. We will also show what kind of deformations they induce in the star, that could lead to emission of gravitational waves. In the case of a twisted magnetosphere we will show how the amount of twist regulates their general topology. A general formalism based on the simultaneous numerical solution of the general relativistic Grad-Shafranov equation and Einstein equations will be presented.Comment: 9 pages, 3 figures, Proceedings of the 10th International Conference on Numerical Modeling of Space Plasma Flows, 8-12 June 2015, Avignon, Franc

    On the Semantic of Ageing: from Successful Ageing to Dynamic and Developmental Model of Ageing

    Get PDF
    During the second part of Twentieth Century worldwide there has been an important process of conceptualization on active ageing and healthy ageing, related to the progressive ageing of population in most of the countries, the so called “Demographic revolution” or “Demographic transition” (Rowe e Kahn, 1987, 1988, 1998, Bates and Bates, 1990, 1993, Kahn, 2002, 2004, Pruchno et al., 2010, Petretto et al., 2016a). We can divide the conceptualization in different groups: American conceptual models, European conceptual models and other conceptual models related to different points of view on ageing (Fernandez-Ballesteros et al., 2011a e b, . The conceptualization of ageing is strictly related to the anthropological framework at the bottom of it and to the interest to all phases of the life, but it is also strictly related to semantical choices at the bottom of the conceptual models (Petretto et al., 2016). In the semantic of ageing we found different words, like active ageing, healthy ageing, and successful ageing and so on. There are different variables that make the difference: a focus on subject and subjectivity, a focus on well-being and quality of life as central outcomes, and on the sociocultural influences that make some variables more important than others and define the role of oldest people in the society. The aim of paper is to discuss different variables related to different semantical choices and to propose some critical hints of analysis in this field
    corecore