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ABSTRACT
Magnetic fields play a critical role in the phenomenology of neutron stars. There is virtually
no observable aspect which is not governed by them. Despite this, only recently efforts have
been done to model magnetic fields in the correct general relativistic regime, characteristic
of these compact objects. In this work we present, for the first time, a comprehensive and
detailed parameter study, in general relativity, of the role that the currents distribution, and
the related magnetic field structure, have in determining the precise structure of neutron stars.
In particular, we show how the presence of localized currents can modify the field strength at
the stellar surface, and we look for general trends, both in terms of energetic properties and
magnetic field configurations. Here we verify that, among other things, for a large class of
different current distributions the resulting magnetic configurations are always dominated by
the poloidal component of the current.
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1 IN T RO D U C T I O N

The peculiar phenomenology of Anomalous X-Ray Pulsars (AXPs)
and Soft Gamma Repeaters (SGRs; Mereghetti 2008) has led to the
introduction of a new class of astrophysical sources, called mag-
netars (Duncan & Thompson 1992; Thompson & Duncan 1993).
These are neutron stars (NSs) endowed with a very strong magnetic
field ∼1014–1015 G, about two orders of magnitude stronger than
what is found in normal pulsars. This strong magnetic field is sup-
posed to form at birth, involving possibly some form of dynamo
action (Bonanno, Rezzolla & Urpin 2003; Rheinhardt & Geppert
2005). At birth the star is still fluid, and will remain so for a typical
Kelvin–Helmoholtz time-scale (∼10–100 s; Pons et al. 1999), be-
fore the formation of a crust. This time-scale is much longer than
a typical Alfvén time-scale, and one expects the magnetic field, in
the end, to relax to some form of stable or metastable configura-
tion (Braithwaite & Nordlund 2006; Braithwaite & Spruit 2006;
Braithwaite 2009).

It is well known that it is the magnetic field that dictates how
NSs manifest themselves in the electromagnetic spectrum. In the
astrophysical community, a vast effort has been devoted to model
the outer magnetosphere of these objects, from the pioneering work
of Goldreich & Julian (1969) to the most recent numerical models
by Tchekhovskoy, Spitkovsky & Li (2013). This contrasts with the
attention that has been placed on modelling the interior structure
of these objects, which has been mostly driven by key fundamental
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questions of nuclear and theoretical physics. Most of the efforts in
this respect have gone towards the study of their equation of state
(EoS; Chamel & Haensel 2008; Lattimer 2012) and their cooling
properties (Yakovlev & Pethick 2004; Yakovlev et al. 2005).

When dealing with problems related to the EoS or the cool-
ing, one can safely assume that the NS is spherically symmetric
(which is a good approximation except for the fastest rotators).
This greatly simplifies the equations that one needs to solve. On
the other hand, it is obvious that the geometry of the magnetic
field is, instead, a truly multidimensional problem. This means that,
except for trivial cases, the task of finding equilibrium solutions
can only be handled numerically. The techniques to model mag-
netic field in general relativity, i.e. GR-MHD and its extensions
(Font 2008), have been mostly developed in the last 10–15 yr. As a
consequence, only recently attention has been paid to the study of
magnetic field structure and evolution in NSs (Bocquet et al. 1995;
Konno 2001; Yoshida, Yoshida & Eriguchi 2006; Haskell et al.
2008; Kiuchi & Yoshida 2008; Ciolfi et al. 2009; Kiuchi, Kotake
& Yoshida 2009; Lander & Jones 2009; Ciolfi, Ferrari & Gualtieri
2010; Frieben & Rezzolla 2012; Fujisawa, Yoshida & Eriguchi
2012; Glampedakis, Andersson & Lander 2012; Yazadjiev 2012;
Ciolfi & Rezzolla 2013; Armaza et al. 2014; Pili, Bucciantini & Del
Zanna 2014a,b).

In general, these studies have focused on trying to obtain specific
configurations, and on investigating a few key aspects of the field
morphology. However, a detailed study of the parameter space is
still partially lacking. This, obviously, raises questions about the ro-
bustness and generality of some conclusions. Moreover, it does not
allow us to understand if there are general trends and expectations.

C© 2015 The Authors
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For this reason, in this paper we present a detailed parameter
study in GR-MHD of currents distribution and the related magnetic
field configurations in NSs. Extending, in part, the work done in Pili
et al. (2014a), we introduce several new functional forms for the
current distribution, and investigate the properties of the resulting
magnetic field. We show that there are general trends associated
with the non-linear behaviour of currents, both in terms of global
integrated quantities and for what concerns the structure of the
magnetic field at the surface. We also show the interplay of various
non-linear terms, and address the robustness of several outcomes.

This paper is organized as follows. In Section 2 we introduce the
formalism, and in particular in Section 2.2 the various functional
forms used for the currents are discussed. In Section 3 we present
our results, and finally conclude in Section 4.

2 T H E M AT H E M AT I C A L F R A M E WO R K

Let us briefly describe here our mathematical framework, in par-
ticular the equations that are solved to derive the magnetic field
equilibrium configurations, and the choices we have adopted in or-
der to describe different magnetic geometries. For further details
the reader is referred to Pili et al. (2014a), where the full mathemat-
ical set-up is presented. In the present work we will assume that the
magnetic field strength is well below the energy equipartition value,
so that the field does not affect either the overall fluid configuration
(assumed to be static and barotropic) or the metric, as discussed in
Pili et al. (2014b). Thus, given a consistent space–time metric and
fluid configuration, we are going to see how to build a magnetic
field configuration on top of it.

In the following we assume a signature ( −, +, +, +) for the
space–time metric. Quantities are expressed in geometrized units
c = G = 1, unless otherwise stated, and all

√
4π factors are absorbed

in the definition of the electromagnetic fields.

2.1 The Grad–Shafranov equation

The space–time and matter distribution of a non-rotating NS, under
the assumption of a negligible magnetic field, are spherically sym-
metric. In this case the space–time is also conformally flat, and the
line element can be written, using standard isotropic coordinates
(t, r, θ , φ), as

ds2 = −α2dt2 + ψ4(dr2 + r2dθ2 + r2 sin2θ dφ2), (1)

where α is the lapse function and ψ is the conformal factor, which
are functions only of the radial coordinate r. These metric terms are
related to the matter distribution by two elliptic equations, derived
from Einstein equations, namely

�ψ = [−2πψ5e], (2)

�(αψ) = [2π(e + 6p)ψ4](αψ), (3)

where � is the usual 3D Laplacian of flat space–time, while e
and p represent, respectively, the energy density and the pressure
measured by the Eulerian observer. For a more general discussion
in the case of rotation and/or a strong magnetic field see Bucciantini
& Del Zanna (2011) and Pili et al. (2014a,b).

For an axisymmetric configuration in a static space–time, the
electromagnetic field can be described uniquely in terms of a
magnetic potential that coincides with the φ-component of the
vector potential Aφ , which is usually referred to as the magnetic
flux function. In particular the solenoidality condition, together with

axisymmetry, allows one to express the poloidal component of the
magnetic field as the gradient of a magnetic flux function, whereas
any toroidal component at equilibrium must be related to Aφ by
means of a scalar current function I that depends on Aφ alone.
Thus, the components of the magnetic field are given by

Br = ∂θAφ

ψ6r2 sin θ
, Bθ = − ∂rAφ

ψ6r2 sin θ
, Bφ = I(Aφ)

αψ4r2 sin2 θ

(4)

for any choice of the free function I(Aφ). Notice that here we
are implicitly assuming the presence of a non-vanishing poloidal
component. In the case of purely toroidal magnetic field, on the
other hand, the vector potential Aφ is not defined and a different
approach must be adopted (see Pili et al. 2014a, for details).

The Euler equation for a static and barotropic (the pressure is a
function of rest mass density alone) GR-MHD configuration can be
written as

∂i ln h + ∂i ln α = dM
dAφ

∂iAφ, (5)

where i = r, θ , leading to the magnetic Bernoulli-like integral:

ln

(
h

hc

)
+ ln

(
α

αc

)
− M = 0, (6)

in which the label c refers to values at the centre of the NS. Here
ρ is the rest mass density, h := (e + p)/ρ is the specific enthalpy,
and the Lorentz force has been written in terms of the gradient of
the magnetization function M, our second scalar function of Aφ .
In other words, if J i = α−1εijk∂j (αBk) is the conduction current,
then

ρh∂iM = εijkJ
jBk. (7)

This implies that the current components can be expressed in terms
of the functions I(Aφ) and M(Aφ) as

J r = α−1Br dI
dAφ

, J θ = α−1Bθ dI
dAφ

,

J φ = ρh
dM
dAφ

+ I

 2

dI
dAφ

, (8)

where we have introduced the generalized cylindrical radius 
 :=
αψ2rsin θ .

The magnetic flux function Aφ is related to the metric terms
and the hydrodynamical quantities through the so-called Grad–
Shafranov (GS) equation (Pili et al. 2014a):

�̃3Ãφ + ∂Aφ∂ ln(αψ−2)

r sin θ
+ ψ8r sinθ

(
ρh

dM
dAφ

+ I

 2

dI
dAφ

)
= 0,

(9)

which is obtained by working out the derivatives of the magnetic
field in equation (7). For convenience we introduced the regularized
potential Ãφ = Aφ/(r sin θ ), and the following differential opera-
tors:

�̃3 :=� − 1

r2 sin2θ
=∂2

r + 2

r
∂r + 1

r2
∂2

θ + 1

r2 tan θ
∂θ − 1

r2 sin2θ
,

(10)

∂f ∂g := ∂rf ∂rg + 1

r2
∂θf ∂θ g. (11)

The GS equation, which governs the hydromagnetic equilibrium
inside the star, can be also extended outside it, just by neglecting the
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term proportional to the rest mass density. In this case one recovers
the force-free regime (Pili, Bucciantini & Del Zanna 2014c).

2.2 The currents distribution

As anticipated, the purpose of this paper is to study the properties
of various distributions of induction currents, and related magnetic
field configurations, in order to derive general trends and to under-
stand what parameter governs the key aspects of the magnetic field
geometry. For this reason we have adopted functional forms for
the free M(Aφ) and I(Aφ) functions allowing us to sample a large
parameter space, and to investigate configurations with important
morphological properties.

The magnetization function M has been chosen in order to in-
clude non-linear terms in the form

M(Aφ) = kpolAφ

[
1 + ξ

ν + 1

(
Aφ

Amax
φ

)ν]
, (12)

where kpol is the poloidal magnetization constant, ν is the poloidal
magnetization index of the non-linear term, which is normalized to
the maximum value of the vector potential itself Amax

φ . This normal-
ization prevents the non-linear term from diverging, and it allows
the system to remain within the weak field limit. The magnetization
function M vanishes outside the surface of the NS.

For the current function I, we adopted either the form

I(Aφ) = a

ζ + 1
�[Aφ − Asur

φ ]
(Aφ − Asur

φ )ζ+1

(Asur
φ )ζ

, (13)

or

I(Aφ) = a

ζ + 1
�[Aφ − Asur

φ ]
(Aφ − Asur

φ )ζ+1(Amax
φ − Aφ)ζ+1

(Asur
φ Amax

φ )ζ+1/2 ,

(14)

where �[ · ] is the Heaviside function, Asur
φ is the maximum value

that the φ component of the vector potential reaches on the stellar
surface, a is the toroidal magnetization constant and ζ is the toroidal
magnetization index. In both cases the toroidal magnetic field is
fully confined within the star. However, the first case corresponds
to a twisted torus (TT) configuration, where the azimuthal current
has the same sign over its domain and the toroidal field reaches
its maximum where the poloidal field vanishes. On the other hand,
the second case corresponds to a twisted ring (TR) configuration,
where the current changes its sign, and the toroidal field vanishes
in the same place where the poloidal field goes to zero.

With our normalization choices in equations (12)–(14), the so-
lution of the GS equation does not depend on the strength of the
magnetic field. In the limit of a weak field, the metric and fluid
quantities ρ, h, ψ , and α can be assumed as fixed, such that, if Aφ

is a solution of the GS equation for given values of kpol, ξ , ν, a, ζ ,
then ηAφ will be a solution of the GS equation for ηkpol, ξ , ν, a, ζ ,
for both TT and TR cases. Our solution can be thus renormalized
to any value of the magnetic field strength. In particular we have
chosen to display our solution by normalizing the strength of the
magnetic field at the pole to 1014 G. We verified that the limit of
a weak field holds to a high level of accuracy up to a maximum
strength ∼1016 G, corresponding to a typical surface magnetic field
∼a few × 1015 G (Pili et al. 2014, in preparation). For higher fields,
we observe non-linear variations in the ratios of magnetic quantities,
higher than the overall accuracy of our scheme (see Section 2.3). A
partial investigation of the strong field regime, for purely poloidal
cases, is presented in Appendix B.

2.3 The numerical set-up

In all our models we assume that the NS is described by a poly-
tropic EoS p = Kaρ

γa (a special case of the general barotropic EoS
p = p(ρ)), with an adiabatic index γ a = 2. Unless otherwise stated,
the polytropic constant is chosen to be Ka = 110 (in geometrized
units).1 Given that we are here interested in studying different distri-
butions of currents, in the limit of weak magnetic fields, we assume
a fiducial model for the NS that is unaffected by the magnetic field
itself, unless otherwise stated. The role of a strong field has been
already investigated in a previous paper (Pili et al. 2014a).

The fiducial NS model used for computing, on top of it, the
various magnetic field configurations, has a central rest mass den-
sity ρc = 6.354 × 1014 g cm−3, a baryonic mass M0 = 1.500 M�,
a gravitational mass M = 1.400 M�, and a circumferential ra-
dius Rcirc = 15.22 km (corresponding to an isotropic radius
RNS = 13.06 km). This fiducial model is computed in isotropic co-
ordinates using the algorithms and the numerical scheme described
in Bucciantini & Del Zanna (2011).

On top of this fiducial model we then solve the GS equation,
equation (9), as described in Pili et al. (2014a). Let us briefly recall
here the main features of the algorithm employed. The GS equation
is a non-linear vector Poisson equation for the azimuthal component
of the regularized potential Ãφ . The solution is searched in the form
of a series of vector spherical harmonics:

Ãφ(r, θ ) :=
lmax∑
l=0

[Cl(r)Y ′
l (θ )], (15)

where Yl(θ ) are the standard scalar spherical harmonics, the ′ indi-
cates derivation with respect to θ , and we have used the axisymmet-
ric assumption to exclude terms with m �= 0. We want to stress here
again that in the low magnetization limit one can safely assume
that the metric and the matter distribution are unaffected by the
magnetic field, then in the present approximation we only need to
solve the GS equation, for any given fluid structure and associated
space–time metric.

Our algorithm allows us to solve the GS equation over the entire
numerical domain including both the interior of the star and the
surrounding magnetosphere where the rest mass density is numer-
ically set to a fiducial small value (∼10−6 times the value of the
rest mass density at the centre of the star), without the need of a
matching procedure between the exterior solution with the interior
one. The threshold value for the rest mass density is chosen such
that lowering it further produces negligible changes (much smaller
than the overall accuracy of our scheme). We want also to point
here that typical rest mass densities in the atmospheres of proto-NS
are ∼106–108 g cm−3 (Thompson, Burrows & Meyer 2001). This
also guarantees smoothness of the solutions at the stellar surface,
avoiding surface currents. Moreover, the harmonic decomposition
ensures the correct behaviour of the solution on the axis of symme-
try, and the asymptotic trend of the radial coefficients Cl(r) can be
correctly imposed such that they go to 0 with parity ( − 1)l at the
centre, and as Cl(r) ∝ r−(l + 1) at the outer boundary.

The decomposition in equation (15) reduces the GS equation to
a system of radial second-order elliptical non-linear partial differ-
ential equations (PDEs) for the various coefficients Cl(r). These are
solved, using a direct tridiagonal matrix inversion (Bucciantini &
Del Zanna 2011; Pili et al. 2014a). The entire procedure is repeated
until the solution converges with accuracy ∼10−8.

1 This corresponds to Ka = 1.6 × 105 cm5 g−1 s−2.
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The numerical solutions presented here are always computed in
a spherical domain covering the range r = [0, 22] and θ = [0, π].
A uniform spherical grid is adopted with 700 points in the radial
direction and 400 in the angular one. The harmonic decomposition
of the vector potential has lmax = 60. We verified that the overall
accuracy of the solutions is ∼10−3.

3 N U M E R I C A L E QU I L I B R I U M M O D E L S

3.1 Purely poloidal configurations

Let us begin by illustrating the properties of models with a purely
poloidal field, obtained by a purely toroidal current with I = 0, so
that all properties will be determined by the function M(Aφ) alone.
As already pointed out in our previous paper (Pili et al. 2014a), the
parity of the magnetic field with respect to the equator depends on
the parity of the linear current term in the magnetization function
M. This is proportional to the rest mass density ρ, it is symmetric
with respect to the equator, whereas the related magnetic field is
antisymmetric. The non-linear term cannot change this parity. The
result is that all our models are dipole dominated, and only terms odd
in l are present in equation (15). See Appendix A for a discussion
on how one can obtain antisymmetric solutions.

The value of ξ can be chosen such that the non-linear term in
equation (12) leads to subtractive currents (ξ < 0) or additive cur-
rents (ξ > 0), while the value of ν sets how much concentrated this
current is.

In Fig. 1 we show the magnetic field and the current distribution
for a series of models computed with different values of ξ < 0
and different values for the poloidal index ν. The effect of the non-
linear term is to suppress the currents in the outer part of the star,
and to concentrate them in the inner region. The same holds for
the magnetic field. As ξ decreases, the interior of the star becomes
progressively less magnetized, and the magnetic field is confined
towards the axis. It is interesting to note that this effect becomes
significative only as ξ approaches −1.0 (for values of ξ closer to
0 deviations are marginal). Moreover it is evident that in the case
of subtractive currents the magnetic field geometry that one finds
is almost independent on the magnetization index ν. Indeed the
change in poloidal index seems only to produce marginal effects in
the magnetic field distribution, with configurations that are slightly
more concentrated towards the axis for smaller values of ν. In
particular we find that the unmagnetized and current-free region
extends to fill the outer half of the star (the magnetic field at the
equator drops to zero at about half the stellar radius). One also
finds, in general, that the ratio of the strength of the magnetic field
at the pole, with respect to the one at the centre increases by about
30–50 per cent, as ξ approaches −1.

Interestingly, we were not able to obtain models with ξ < −1.
This implies that we cannot find configurations where there is a
current inversion (the sign of the current is always the same inside
the star). Our relaxation scheme for the GS equation seems at first
to converge to a metastable equilibrium with accuracy ∼10−4, but
then the solution diverges. We want to stress here that the GS
equation, in cases where the currents are non-linear in the vector
potential Aφ , becomes a non-linear Poisson-like equation that in
principle might admit multiple solutions and bifurcations (local
uniqueness is not guaranteed). This is a known problem (Ilgisonis
& Pozdnyakov 2003), and suggests that a very small tolerance
(we adopt 10−8) is required to safely accept the convergence of
a solution. This issue might be related to the problem of local

uniqueness for non-linear elliptical equations. It is well known that
the non-linear Poisson equations of the kind ∇2ψ = kψa satisfy
local uniqueness only if ka ≥ 0. It is evident that this depends on
the relative sign of the coefficient and exponent of the non-linear
source term: in our case the relative sign of ξ and ν. Given that ν

is always positive, what matters is just the sign of ξ . This explains
why we can obtain solutions with additive currents (ξ > 0) even in
the regime dominated by the non-linear term, while solutions with
subtractive currents (ξ < 0) can only be built up to ξ > −1, where
the contribution of the non-linear current is still smaller than the
linear one which act as a stabilizing term. However, we want to
recall here that the GS is not a Poisson equation, and it is not proved
that the same uniqueness criteria apply.

In Fig. 2 we show the opposite case of additive currents, ξ > 0.
The value of ν in this case establishes how much concentrated these
currents are, and plays a major role in determining the properties
of the resulting magnetic field. Rising the value of ξ the non-linear
currents become progressively more important. We can define a
non-linear-dominated regime in the limit of high ξ , where the mag-
netic field structure and distribution converge to a solution that is
independent of ξ . The values of ξ , at which this limit is reached,
depends on ν. For ν = 1 the limit is achieved already at ξ = 20 as
can be inferred from Fig. 2, while for ν = 10 the limit is reached
at ξ ∼ 1000. As already noted (Pili et al. 2014a), in the case ν = 1
the presence of a non-linear current term does not alter significantly
the geometry of the magnetic field, or other global integrated quan-
tities like the net global dipole moment. The ratio of the strength of
the magnetic field at the centre with respect to the one at the pole
diminishes slightly by about 10 per cent. The location of the neutral
current point, where the magnetic field vanishes is unchanged.

At higher values of ν the magnetic field geometry in the non-
linear-dominated regime changes substantially. The overall current
is strongly concentrated around the neutral point. The location of
the neutral point itself shifts towards the surface of the NS, from
about 0.7 stellar radii at ξ = 0 to about 0.8 stellar radii in the
non-linear-dominated limit. Moreover the maximum in the strength
of the magnetic field is not reached at the centre any longer, but
at intermediate radii where the non-linear current is located. In
this case the value of this local maximum can be a factor a few
higher than the value at the centre. Configurations with two local
maxima are also possible. This behaviour is strongly reminiscent of
what is found for the so-called TT configurations, where a toroidal
component of the magnetic field is also present, inducing a current
that behaves as the non-linear term we have introduced here (see
next section).

One can also look at the strength and distribution of the surface
magnetic field, shown in Fig. 3. For decreasing values of ξ < 0
the magnetic field tends to concentrate at the pole, in a region
that is ∼30◦ for ξ = −1. The radial magnetic field in the equatorial
region is strongly suppressed, the field is almost parallel to the stellar
surface, and the overall strength of the poloidal field is a factor of 10
smaller with respect to the case with ξ = 0. In general these results
are weakly dependent on the value of ν, with higher values of ν

leading to configurations where the field is slightly less concentrated
towards the poles. A quite different behaviour is seen for the cases
of additive currents ξ > 0. For ν = 1, the radial component of the
magnetic field tends to be higher than in the case ξ = 0, and it
tends to be uniform in the polar region. The θ component of the
magnetic field increases in the equatorial region by about a factor of
2. The overall strength of the magnetic field becomes quite uniform
over the stellar surface in the non-linear-dominated regime. These
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Figure 1. Purely poloidal field case. Strength of the azimuthal current in units of 1019 G s−1 (left half of each panel) and strength of the poloidal magnetic
field in units 1014 G (right half of each panel). White contours represent magnetic field surfaces (isocontours of Aφ ). The left-hand column represents cases
with ν = 1, the central one those with ν = 4, the right one those with ν = 10. From top to bottom, rows represent cases with ξ = −0.5, −0.9, −1.0. The thick
green line is the stellar surface. In all cases the surface magnetic field at the pole is 1014 G. Axes refer to a Cartesian frame centred on the origin and with the
z-axis corresponding to the symmetry axis.

effects are further enhanced for increasing values of ν. At ν = 4,
in the non-linear-dominated regime, the radial component of the
magnetic field reaches its maximum at ∼± 25◦ from the equator.
The θ component, parallel to the NS surface, is instead strongly
enhanced by about a factor of 3 at the equator. The result is that
for increasing ξ there is a transition from configurations where the
poloidal field strength is higher at the poles, to configurations where
it is higher (by about 40 per cent) at the equator, with intermediate
cases where it can be almost uniform. At ν = 10 these effects are
even stronger: the radial field now peaks very close to the equator, at
∼± 10◦, and the overall strength of the magnetic field can be higher
at the equator by a factor of ∼3 with respect to the poles. This is

the clear manifestation of a concentrated and localized peripheral
current, close to the surface of the star.

To summarize the results in the fully saturated non-linear regime:

(i) subtractive currents, independent of their functional form,
confine the magnetic field towards the axis, leaving large unmagne-
tized region inside the star;

(ii) for subtractive currents, the surface magnetic field is con-
centrated in a polar region of ∼30◦ from the pole, while at lower
latitudes (±40◦ from the equator) it can be a factor of 10 smaller
than at the pole (to be compared with one half for pure dipole);
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Investigating GR equilibria of magnetized NSs 3283

Figure 2. Purely poloidal field case. Strength of the azimuthal current in units of 1019 G s−1 (left half of each panel) and strength of the poloidal magnetic
field in units 1014 G (right half of each panel). White contours represent magnetic field surfaces (isocontours of Aφ ). The left-hnd column represents cases with
ν = 1, the central one those with ν = 4, the right one those with ν = 10. From top to bottom, rows represent cases with ξ = 2.0, 10.0, 200.0. The thick green
line is the stellar surface. In all cases the surface magnetic field at the pole is 1014 G. Axes refer to a Cartesian frame centred on the origin and with the z-axis
corresponding to the symmetry axis.

(iii) additive currents tend to concentrate the field in the outer
layer of the star, the effect being stronger for higher values of the
non-linearity; the field strength reaches its maximum closer to the
surface, while its strength at the centre can be even more than a
factor of 2 smaller;

(iv) for additive current, the structure of the field at the equator
can be qualitatively different than a dipole: higher at the equator
than at the pole, even by a factor a few. A geometry similar to what
is found in TT configurations.

3.2 Twisted torus configurations

Mixed geometries with poloidal and toroidal magnetic fields have
been presented in the past in the so-called TT configurations (Ciolfi
et al. 2009, 2010; Lander & Jones 2009; Fujisawa et al. 2012;

Glampedakis et al. 2012; Ciolfi & Rezzolla 2013; Pili et al. 2014a,b).
These configurations are characterized by a torus-like region, in the
interior of the star, just under the stellar surface, where the toroidal
field is confined. This geometry can be obtained if one chooses for
the current function I the form of equation (13). In Fig. 4 we show
the magnetic field distribution for a typical TT solution.

Particular attention has been recently devoted to the study of
this kind of systems, because there is evidence that magnetic field,
in a fluid star, tends to relax towards a TT geometry, and that
only mixed configurations can be dynamically stable (Braithwaite
& Nordlund 2006; Braithwaite & Spruit 2006; Braithwaite 2009).
Motivated by these dynamical studies, efforts in the past have gone
towards modelling systems where the equilibrium magnetic geome-
try was such that the magnetic energy was dominated by the toroidal
component. Despite several attempts in various regimes (Ciolfi et al.
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Figure 3. Purely poloidal field case. Magnetic field at the surface normalized to the value at the pole, for various values of ξ . Left-hand column represents
cases with ν = 1, central column cases with ν = 4, and right-hand column cases with ν = 10. Upper panels display the total strength of the poloidal magnetic
field, middle panels the strength of the parallel θ component, and lower panels the radial one.

Figure 4. Magnetic field for a TT configuration with ζ = 0 and a = 1.5
(corresponding to the maximum of the ratioHtor/H). Strength of the toroidal
magnetic field (left) and poloidal magnetic field (right) normalized to the
surface value at the pole. White contours represent magnetic field surfaces
(isocontours of Aφ ). The thick green line is the stellar surface. Axes refer to
a Cartesian frame centred on the origin and with the z-axis corresponding
to the symmetry axis.

2009; Lander & Jones 2009; Pili et al. 2014a), only configurations
where the energetics was dominated by the poloidal component
could be found. Recently Ciolfi & Rezzolla (2013, hereafter CR13)
have shown that a very peculiar current distribution might be re-
quired in order to obtain toroidally dominated systems. This raises
questions about the importance of the specific choice in the form
of currents I and M. More precisely one would like to know if
previous failure to get toroidally dominated geometries is due to
a limited sample of the parameter space, or if only very ad hoc
choices for the current distribution satisfy this requirement. More-
over most of the efforts have concentrated on to understanding how
this magnetic field acts on the star, and the amount of deformation

Figure 5. Value of the ratio Htor/H for TT sequences characterized
by different values for ζ as a function of a. The dashed lines corre-
spond to configurations where the ratio between the maximum strength
of the toroidal magnetic field, Bmax

tor , and the maximum strength of the
poloidal component, Bmax

pol , is constant. From bottom to top Bmax
tor /Bmax

pol =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25.

that it induces. This is mostly motivated by searches for possible
gravitational waves from NSs. Attention has focused on a limited
set of models, and current distributions. In particular a deep investi-
gation has been carried out only for the case ζ = 0 and 0.1 (Lander
& Jones 2009; Pili et al. 2014a).

Here we present a full investigation of TT configurations for vari-
ous values of the parameter ζ . This parameter regulates the shape of
the current distribution inside the torus. For ζ → −0.5 the current
becomes uniformly distributed within the torus, while for ζ > 0 it
concentrates in the vicinity of the neutral line, where the poloidal
field vanishes. It was shown that it is the integrated current associ-
ated with the current function I that prevents TT configurations to
reach the toroidal-dominated regime. As the strength of this current
increases, the toroidal field rises, but the torus-like region shrinks
towards the surface of the star and its volume diminishes.

In Fig. 5 we show how the ratio of magnetic energy associated
with the toroidal fieldHtor over the total magnetic energyH changes
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Figure 6. Left-hand panel: strength of the poloidal magnetic field (top) and toroidal magnetic field (bottom) inside the star, on the equatorial plane, as a
function of r, normalized to RNS, for models corresponding to the maximum of Htor/H, for various values of ζ . Middle panel: strength of the poloidal magnetic
field (top) and toroidal magnetic field (bottom) inside the star, on the equatorial plane, as a function of r, for models corresponding to Bmax

tor /Bmax
pol = 0.5.

Right-hand panel: strength of the magnetic field at the surface for models corresponding to the maximum of Htor/H. In all cases the strength is normalized to
the surface value at the pole.

with the parameter a and ζ . The maximum value of this ratio is
always of the order of 0.06, slightly higher for smaller values of ζ . In
all cases we verified that at high values of a the volume of the region
containing the toroidal magnetic field is strongly reduced. For ζ = 1
we could not find equilibrium models (solution of the GS equation)
all the way to the maximum (the algorithm failed to converge).
Given that, for equation (13), both the energy of toroidal magnetic
field and the associated current scale with I, one cannot increase
one without increasing the other. The systems seem always to self-
regulate, with a maximum allowed current, implying a maximum
allowed toroidal magnetic energy. The value of ζ affects the local
value and distribution of the magnetic field, but does not play a
relevant role for integrated quantities like currents and magnetic
energy. Indeed by looking at Figs 5 and 6, it is evident that for ζ < 0
it is not possible to have configurations where the maximum strength
of the toroidal field exceeds the one of the poloidal field. For smaller
ζ the same toroidal magnetic field energy corresponds in general to
weaker toroidal magnetic fields. For ζ > 0 instead we could reach
configurations with a toroidal field stronger than the poloidal one.
Interestingly the volume of the torus, for configurations where the
ratio Htor/H is maximal, does not depend on ζ .

One can also look at the magnetic field distribution on the surface
of the star. Given our previous results for purely poloidal configu-
rations with non-linear current terms, we expect strong deviations
from the standard dipole, where the strength of the magnetic field
at the pole is twice the one at the equator. In Fig. 6 we show the
total strength of the magnetic field at the surface (where the field is
purely poloidal), for configurations where the ratio Htor/H is max-
imal. The presence of a current torus, just underneath the surface, is
evident in the peak of the field strength at the equator. The peak is
even narrower than what was found for purely poloidal cases with
ξ = 10, and the strength of the equatorial field can be more than
twice the polar one. Again, there is little difference among cases
with different ζ . Higher values of ζ correspond to currents that are
more concentrated around the neutral line, located at ∼0.85RNS,
and as such buried deeper within the star. Indeed the strength of the
magnetic field at the equator with respect to the value at the pole is
higher for smaller ζ .

Recently CR13 have presented results where the ratio Htor/H
is >0.5 and can reach value close to unity. However, in all of our
models we get values Htor/H always less than 0.1.

A precise comparison with CR13 is non-trivial. For example,
using the definition of current in their equation (3) does not lead to
converged solutions in the purely poloidal case (confirmed by Ciolfi,
private communication). This because their formulation of equation
(3), with a non-linear term which introduces a subtractive currents
with respect to the linear one, can lead to current inversions inside
the NS. As we pointed out, our algorithm fails (diverges) every
time we attempt to model systems with current inversions, and this
might be related with uniqueness issue of the elliptical GS equation.
If this is indeed an issue with uniqueness then different numerical
approaches might be more or less stable, and the robustness of the
solution becomes questionable.

Note that CR13 impose that the field at the surface is a pure dipole,
setting all other multipoles to zero. This might probably filter out
and suppress the formation of localized currents at the edge of the
NS and any effect associated with small-scale structures, like the
increase of the value of Aφ

sur. As we show in this paper, the structure
of the magnetic field at the surface, can dramatically differ from a
pure dipole, depending on the current distribution. Even using the
functional form by CR13, in the range where our code converges,
we found that at the surface of the NS the magnetic field is far from
a pure dipole.

Imposing a purely dipolar field outside the stellar surface may
have been determinant in the results of CR13, but because we are
not able to impose such a boundary condition, further independent
verification is needed to resolve this issue.

3.3 Twisted ring configurations

In the previous section we have shown that in the case of TT geom-
etry it is not possible to reach toroidally dominated configurations.
This result is also independent on the particular shape of the current
distribution I. The system always self-regulates. As was pointed
out by CR13 this is due to the one-to-one correspondence between
integrated quantities, like the net current and magnetic field energy.
Motivated by this, we can look for different forms for the equation
I that allow a larger toroidal field, with a smaller net integrated
current. The current given by equation (13) has always the same
sign, and as shown, acts as an additive term. On the other hand,
the current associated with equation (14) changes its sign within
the toroidal region where it is defined. The field in this case has a
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Figure 7. Magnetic field for a TR configuration with ζ = 0 and a = 12.6
(corresponding to a ratio Bmax

tor /Bmax
pol = 0.15 close to the maximum).

Strength of the toroidal magnetic field (left) multiplied times a factor of
6 for convenience, and poloidal magnetic field (right) normalized to the
surface value at the pole. White contours represent magnetic field surfaces
(isocontours of Aφ ). The thick green line is the stellar surface. Axes refer
to distances in a Cartesian frame centred on the origin and with the z-axis
corresponding to the symmetry axis.

Figure 8. Value of the ratio Htor/H for TR sequences characterized
by different values for ζ as a function of a. The dashed lines corre-
spond to configurations where the ratio between the maximum strength
of the toroidal magnetic field Bmax

tor and the maximum strength of the
poloidal component Bmax

pol is constant. From bottom to top Bmax
tor /Bmax

pol =
0.05, 0.075, 0.10, 0.125, 0.150. The dotted line corresponds to configura-
tions where Bmax

tor /Bmax
pol = 0.14, indicating that the ratio of the magnetic

field component is not monotonic.

geometry reminiscent of a TR: its strength vanishes on the neutral
line, where also the poloidal field goes to zero, and reaches a max-
imum in a shell around it. This can be clearly seen in Fig. 7. The
net integrated currents in this case is much less than in the case of
equation (13), and it is globally subtractive.

In Fig. 8 we show how the ratio of magnetic energy associated
with the toroidal fieldHtor over the total magnetic energyH changes
with the parameter a and ζ . Again we find that it is not possible to

build models that are toroidally dominated. The maximum value of
the ratio Htor/H never exceeds 0.03 for all the values of ζ that we
have investigated. The reason now is exactly the opposite of the one
for TT configurations. The current of TR geometry, as anticipated,
is subtractive. It acts like the non-linear terms in the purely poloidal
configurations with ξ < 0. Its effect is to remove current from the
interior of the star. This means that in the region where I �= 0,
the vector potential Aφ becomes shallower: the quantity [Amax

φ −
Asur

φ ] diminishes. However, the strength of the toroidal magnetic
field itself scales as [Amax

φ − Asur
φ ]. The non-linearity of the problem

manifests itself again as a self-regulating mechanism. Increasing a,
in principle, implies a higher subtractive current, but this reduces the
value of [Amax

φ − Asur
φ ], and the net result is that subtractive current

saturates, and the same holds for the toroidal magnetic field. This
saturation is reached at small values of Htor/H. Indeed, in Fig. 8,
a clear maximum is only visible for ζ < 0, while for ζ ≥ 0 the
curves seem to saturate to an asymptotic value. Again we find that
the value of ζ leads to small variations, with higher values of ζ

leading to configurations with slightly higher value of Htor/H.
In all the parameter space we have investigated the strength of

the toroidal magnetic field never exceeds the one of the poloidal
component. At most, the toroidal magnetic field reaches values that
are ∼0.15 times the maximum value of the poloidal field. This is in
sharp contrast with what was found for TT cases. Moreover, while
in the TT cases the maximum strength of the toroidal field Bmax

tor

was found to be a monotonically increasing function of the param-
eter a, along sequences at fixed ζ , now Bmax

tor reaches a maximum
∼0.15Bmax

pol , and then slowly diminishes, as can be seen from Fig. 8.
This is again a manifestation of the effect of subtractive currents. In-
terestingly, the region occupied by the toroidal magnetic field does
not shrink as a increases. The saturation of the toroidal magnetic
energy is not due to a reduction of the volume filled by the toroidal
field, but to a depletion of the currents.

As was done for the TT cases, we can also look at the distribution
of magnetic field inside the star. In Fig. 9, we show the strength of
the poloidal and toroidal components of the magnetic field along
an equatorial cut. The effect of subtractive currents is evident in the
suppression of the poloidal field in the TR region that extends from
about half the star radius to its outer edge. It is also evident that the
value of ζ plays only a minor role, and that differences are stronger
at saturation than for intermediate values. Interestingly, there are
very marginal effects concerning the strength of the magnetic field
at the surface, which is essentially the same as the standard dipole.
Again this can be partially understood recalling the behaviour of
purely poloidal configurations with ξ < 0. In those cases, substantial
deviations from the dipolar case were achieved only in the limit ξ

→ 1, when a large part of the star was unmagnetized. Here the
size of the unmagnetized ring region remains more or less constant,
and it does not affect the structure of the field at the surface. The
global effect of the subtractive currents is small, and this reflects in
the trend of the magnetic dipole moment, which diminishes only
slightly by about 30–40 per cent.

3.4 Dependence on the stellar model

In the previous sections we have investigated in detail the role of two
families of currents I that can be considered quite representative
of a large class of current configurations. Our results show that in
neither case we could obtain magnetic field distributions where the
energetics was dominated by the toroidal component.

In this section we try to investigate the importance of the
underlying stellar model. In general, previous studies have mainly
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Figure 9. Left-hand panel: strength of the poloidal magnetic field (top) and toroidal magnetic field (bottom) inside the star, on the equatorial plane, as a
function of r, normalized to RNS, for models corresponding to the maximum of Htor/H, for various values of ζ . Middle panel: strength of the poloidal magnetic
field (top) and toroidal magnetic field (bottom) inside the star, on the equatorial plane, as a function of r, for models corresponding to Bmax

tor /Bmax
pol = 0.5.

Right-hand panel: strength of the magnetic field at the surface for models corresponding to the maximum of Htor/H. In all cases the strength is normalized to
the surface value at the pole.

Figure 10. Value of the ratio Htor/H for TT sequences with ζ = 0, charac-
terized by different values for the gravitational mass as a function of a. The
dashed grey lines correspond to configurations where the ratio between the
maximum strength of the toroidal magnetic field Bmax

tor and the maximum
strength of the poloidal component Bmax

pol is constant. From bottom to top
Bmax

tor /Bmax
pol = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25. The dotted red line

corresponds to a configuration with M = 2.0 M�, and the same central rest
mass density as the 1.7 M� case. The dot–dashed red line corresponds to a
configuration with M = 1.7 M�, but a lower central rest mass density with
respect to the Ka = 110 case.

focused on the distribution of currents, assuming a reference model
for the NS: either a 1.4 M� (Ciolfi et al. 2009, 2010; Lander & Jones
2009; CR13) or a 1.5 M� (Pili et al. 2014a) NS. Only Glampedakis
et al. (2012) have partly investigated how the stellar structure might
affect the energetics properties of the magnetic field. In particular
they focused on the role of stable stratification, and showed that this
might change the maximum amount of magnetic energy associated
with the toroidal magnetic field, in standard TT configurations.

In Fig. 10 we show how the ratio Htor/H changes as a function
of a for standard TT models with ζ = 0, but for NSs with different
masses. For Ka = 110 the maximum mass for a NS is found to be
∼1.7 M�. It is clear that models with a higher mass have a higher
value of the ratio Htor/H, for the same value of a. Interestingly,
the maximum value reached by Htor/H for a 1.7 M� NS is about

0.08, compared to 0.06 for a ∼1.4 M� NS. This is a substantial
relative increase, even if the magnetic energy is still dominated by
the poloidal component. Moreover this increasing trend is stronger
at higher masses.

We also investigated how much of this trend is related just to
the total stellar mass (i.e. the compactness of the system) and how
much depends on the value of rest mass density in the core of the
NS. Indeed it was previously found the NSs with higher masses can
harbour in principle stronger magnetic fields (Pili et al. 2014a). On
the other hand, the current associated with M, responsible for the
structure of the poloidal field, scales as the rest mass density. For
models built by keeping constant Ka = 110, a higher mass implies
a higher central rest mass density, so that it is hard to disentangle
them. In Fig. 10 we show also two models with different EoS:
one that has the same central rest mass density as the 1.7 M�
NS, but different values of the adiabatic constant Ka, such that is
total gravitational mass is 2.0 M�; the other has the same mass of
1.7 M�, but a lower central rest mass density (about one third). It is
evident that models with a smaller total mass, given the same central
rest mass density, correspond to lower maximum value for Htor/H.
On the other hand, given the same central rest mass density, the
ratio Htor/H clearly increases with total mass. It appears that the
rest mass density stratification (how much concentrated is the rest
mass density distribution in the core and how much shallow is it in
the outer layers) regulates the relative importance of I and M, and
the net outcome in terms of energetics of the toroidal and poloidal
components.

3.5 Mixed non-linear currents

It was suggested by CR13 that a possible reason why TT configura-
tions, computed using ξ = 0 in M, could not achieve the toroidally
dominated regime was due to the fact that the contribution to the
azimuthal current from I soon dominates. As a consequence, the re-
sulting poloidal configuration enters the non-linear regime in which
the size of the torus region, where the toroidal field is confined,
shrinks. They show that, by introducing a current term in M to
compensate for I, it was possible to avoid this behaviour. However,
they also stressed the fact that a very peculiar form for M was
needed to achieve significative results.
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Figure 11. Values of the ratio Htor/H for TT configurations with ζ = 0, in the presence of non-linear terms in the definition of M. Left-hand panel: cases
with ν = 1. Middle panel: cases with ν = 4. Right-hand panel: cases with ν = 10.

Here we investigate what happens to TT models, using for I the
form of equation (13), if we retains non-linear terms in the definition
of M, and what happens in cases where ξ �= 0. In Fig. 11 we show
how Htor/H changes for TT configurations with ζ = 0 for various
values of the parameter ξ and for selected values of ν = 1, 4, 10.
Naively, based on the idea that compensating currents are needed to
achieve toroidally dominated configurations, one would expect that
higher values of Htor/H should be reached for ξ < 0 (subtractive
currents). Fig. 11 shows instead that the trend is the opposite. In
general, lower values of Htor/H are found for ξ < 0 and higher
for ξ > 0, even if this is just a minor difference. The value of ν

seems not to play a major role. Interestingly the effect is maximal
for intermediate values of ν = 4, and marginal for ν = 10.

This counterintuitive trend is due to the fact that both the effects
of the current term I and the contribution of non-linear terms in M
become important only in the fully non-linear regime. For values of
ξ ∼ 0 the effect of the non-linear current term inM is negligible. For
higher values of ξ this non-linear term becomes more important. In
the case ξ < 0 they give rise to a compensating current (the net dipole
grows less) but, as discussed, they also tend to suppress the vector
potential and this effect is stronger, leading to a overall decrease of
the magnetic field. In the case ξ > 0, one would expect this additive
current to lead to an even more pronounced reduction in the torus
volume, however, this is not so. The net dipole increases but this
additive currents enhance the vector potential and the net result is a
higher Htor/H (up to 30 per cent higher for ν = 4 and ξ = 20). The
highly non-trivial behaviour of the non-linear regime is apparent.
It is however possible that different forms for the compensating
current might lead to different results.

Interestingly, again we are not able to construct equilibrium
model with current inversion. It is possible, for higher values of
ν, to build models with ξ < −1, but only as long as the current in
the domain is always of the same sign. Indeed, cases with ξ < −1
are allowed by the presence of a current due to I, given by equa-
tion (13), that is always additive. There appears to be a threshold
value for a below which cases with ξ < −1 are not realized. This
is consistent with the argument about local uniqueness we discuss
in the purely poloidal case. Solutions with subtractive currents can
be built only as long as the non-linear current term is subdominant,
and other currents enforce stability. Given the presence of an extra
current due to I, associated with the toroidal magnetic field, now it
is possible to build solutions with ξ < −1.

Similar results apply for the cases of TR configuration where I
is given by equation (14). In Fig. 12 we show these results. For
values of ξ < 0 the ratio Htor/H is essentially unchanged (it looks
like the ratio is marginally smaller). For positive values of ξ we
found a substantial increase: Htor/H can be a factor of 2 higher

Figure 12. Values of the ratio Htor/H for TR configurations with ζ = 0,
in the presence of non-linear terms in the definition of M, with ν = 4.

than in the simple TR case. In this case, the additive non-linear term
in M compensates the subtractive current due to I, and stronger
values for the magnetic field are achieved. However, in the range of
parameter investigated here, the ratio Htor/H never exceeds 0.05.
The energetics is still dominated by the poloidal magnetic field.

Given the opposite behaviour of the currents associated with I,
respectively from equation (13) and equation (14), we also inves-
tigated configurations where the current associated with I is given
by a combination of TT and TR configurations. Based on the results
discussed above, we expect that the additive term associated with
the component of I from equation (13) should lead to results similar
to what we found for TR configurations with non-linear terms in
M with ξ > 0. Indeed this is confirmed. In general we find that
the ratio Htor/H is smaller than for the TT case, but larger than for
TR case, even by a factor of 2. It seems that additive currents, at
least for the functional form adopted here, tend to dominate over
subtractive ones.

4 C O N C L U S I O N

In this work we investigated several equilibrium configurations for
magnetized NSs, carrying out a detailed study of the parameter
space. This allowed us to investigate general trends, and to sample
the role of various current distributions. Interestingly we found
that, almost insensitive of the chosen current distribution, the ratio
Htor/H never grows above 0.1.

We tried to use the same prescription for the current structure
inside the star as the one used by CR13, but we, not only could not
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reproduce their results, but we got the opposite trend of a reduction
in Htor/H, consistent with all the other results we have presented
here. We pointed to a possible origin of this difference, related
perhaps to the choice in the boundary conditions done by them,
but because we are not able to impose such a boundary condition,
further independent verification is needed to resolve this issue.

The failure to get toroidally dominated configurations, that are
expected for stability in barotropic stars, might even point to the
possibility that barotropicity does not hold in NS, and the entire
stability problem is just related to entropy stratification (Reiseneg-
ger 2009; Akgün et al. 2013), and not to the current distribution: a
stably stratified NS can hold in place even a magnetic field out of
MHD equilibrium.

On the other hand, the structure and strength of the magnetic field
at the surface are strongly influenced by the location and distribu-
tion of currents inside the star. We showed that magnetic field at
the equator can in principle be much higher or much smaller than
the value of the field at the pole. This means that the surface field
can easily be dominated by higher multipoles than the dipole. It
also implies that local processes, at or near the surface, might differ
substantially, in their signatures, from the expectations of dipole-
dominated model, while on the other hand, processes related to the
large-scale field, as spin-down, will not. Interestingly, the result of
the fully saturated non-linear regime, in the presence of subtrac-
tive currents, looks similar to what has recently been found in full
time-dependent MHD simulation of core collapse and proto-NS for-
mation in supernovae by Obergaulinger, Janka & Aloy Toras (2014)
(see the bottom panel of their fig. 1 4). The reason is due to the fact
that turbulent eddies tend to expel magnetic field (Moffatt 1978),
which concentrates towards the axis, and becomes almost tangential
at the proto-NS surface. Of course turbulence introduces also small
scales, which however are likely to the first to be dissipated by any
resistivity, leaving only the large-scale structure at later times.

We also showed that mass and central rest mass density can affect
the energetic properties of the magnetic field. In principle higher
ratios of Htor/H are reached for more massive and denser NSs.
This might suggest that magnetars are NSs with higher mass than
the average 1.4–1.5 M�. It also stresses the importance and the role
of the EoS in determining possible electromagnetic properties and
signatures of the NS.
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APPENDI X A : ANTI SYMMETRI C SOLUTIO NS

As we already discussed in Section 3.1, the parity of the magnetic
field, with respect to the equator, depends on the parity of the linear
current term in the magnetization function M. All the solutions that
we have shown previously are symmetric (for Aφ) with respect to
the equator because this linear current term is proportional to the
rest mass density. This is a requirement built into the integrability
condition leading to the Bernoulli integral of Euler equation. It
fixes the possible functional forms of M. If one is willing to relax
the global integrability condition, by allowing for example singular
surface currents, it is possible to obtain antisymmetric solutions.
Because of the presence of a surface current, there will be a jump in
the parallel component of the magnetic field at the surface. However,
introducing non-linear current terms in M, one can go to the fully
non-linear saturated regime, where the contribution of the linear
current term becomes negligible, and make the residual jump in
the magnetic field at the surface arbitrarily small. The non-linear
current term will preserve the parity of the surface current. We stress
that, in this case, equilibrium and integrability hold inside the star,
except at the surface itself.

If we choose for M the following functional form:

M(Aφ) = kpolAφ

[
ξ

ν + 1

(
Aφ

Amax
φ

)ν]
, (A1)
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Figure A1. Antisymmetric solution, with ν = 1. Left-hand panel: azimuthal
current density normalized to 0.2 times its maximum. Right-hand panel:
magnetic field strength normalized to the value at the pole. White contours
represent magnetic field surfaces (isocontours of Aφ ). The thick green line
is the stellar surface. Axes refer to a Cartesian frame centred on the origin
and with the z-axis corresponding to the symmetry axis.

and add to the current Jφ (see equation 8) that enters the GS equation
(9), a singular current term,

kpol cos θδ(r − RNS), (A2)

by rising the value of ξ one can find solutions that are independent of
the strength of the surface current. We show in Fig. A1 the result in
the case ν = 1, ξ = 50. The jump at the surface is much smaller than
the value of the magnetic field, and the solution can be assumed to
be smooth. The result is dominated by the quadrupolar component.

Note that the symmetry of the current term only fixes the sym-
metry of the final solution. Every symmetric current will lead to
the same symmetric field, which depends only on ν, while every
antisymmetric function will lead to the same antisymmetric field,
which again depends on ν alone. With this approach it is not pos-
sible to produce for example octupolar models (where the dipole
and quadrupole components are absent). Even the use of an oc-
tupolar surface current leads to dipolar configurations, in the fully
saturated non-linear regime. In the presence of non-linear current
term, multipoles are not eigenfunctions of the GS, and mode mix-
ing is introduced. For the values of ν that we investigated, there is
always a leading dipole component in the symmetric case, and a
leading quadrupole component in the antisymmetric case, even if
the strength of higher order multipoles at the surface can be relevant.

A P P E N D I X B : ST RO N G FI E L D R E G I M E

Our formalism allows us to extend the solutions computed in the
weak field regime to the strong field regime to evaluate, for example,
the related deformation induced by the magnetic field. In the strong
field regime, however, the solution depends on the strength of the
field. A detailed study of the induced deformation in the case of
a purely poloidal field with ξ = 0, and of TT configurations with
ζ = 0, has already been presented by Pili et al. (2014a). In that
work there was also an investigation of the role of non-linear current
terms in M, but only for ν = 1 and for small values of ξ far from
the fully non-linear saturated regime. The present results, about

Figure B1. Upper panel: relative variation of the circularization radius as
a function of the maximum strength of the magnetic field inside the star, for
various values of ν and ξ . Lower panel: deformation rate as a function of
the maximum strength of the magnetic field inside the star. These sequences
are done for a constant gravitational mass M = 1.4 M�.

TT configurations with various values of ζ , show that Htor/H has
similar trends to the ζ = 0 case, and is always smaller than 0.1. We
expect the deformation to be similar to what was found in Pili et al.
(2014a). On the other hand we have shown that, for purely poloidal
fields, the non-linear current term can substantially modify the field
structure.

In Fig. B1 we plot the deformation rate e, and the relative vari-
ation of the circularization radius �Rcirc, as defined by Pili et al.
(2014a), for purely poloidal configuration with various values of ν,
and with values of ξ chosen such that the fully non-linear regime is
reached, both for subtractive and additive terms. Note that, for sub-
tractive currents, the deformation rate is insensitive to the values of
ν, because, as we have shown, in the subtractive case, the resulting
magnetic field is only very weakly dependent on ν. On the other
hand, substantial differences are observed in the case of additive
currents.

Subtractive currents tend to concentrate the field towards the
centre. This leads to significative changes of the rest mass density
distribution limited to the core (structures with two rest mass density
peaks can be reached) without affecting the rest of the star. As a
consequence, the deformation rate, being related to the moment
of inertia, changes less than in the case ξ = 0, where a more
uniformly distributed magnetic field affects also the outer layers.
On the contrary, additive non-linear currents tend to concentrate the
field towards the edge of the star, and thus to produce a stronger
deformation. This trend is evident in the circularization radius. This
radius is almost unchanged for ξ = −1, while for ξ > 0 the field
causes a larger expansion of the outer layers of the star. Note that
for ξ = 0, −1 and for ν = 1 the maximum magnetic field strength
is reached at the centre. For ν = 4 and ξ 
 1 it is reached half way
through the star (see Fig. 2).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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