79 research outputs found

    Thermal performance of high voltage power cables

    No full text
    The UK high voltage electricity transmission network continues to face annual rises in demand, with ever greater volumes of power supplied to load centres throughout the country. To operate this network effectively, it is vital to accurately calculate the maximum allowable electric current which can be safely carried by each component in the power system. In high voltage power cables, this limit is defined by the maximum operating temperature of the cable insulation. Specify this current rating to be too low and the cable asset will never be used to its full potential; conversely setting the rating to be too high risks damage to the asset as the excessive heating can cause premature failure. Thus the rating calculation must be optimised to maintain security of supply by minimising the risk of cable failure, while also maximising the returns from capital investment on the power network. This project has employed a variety of mathematical techniques to improve the methods by which current ratings are calculated. Modern computational techniques such as finite element analysis (e.g Figure 1) and computational fluid dynamics are used to create more advanced circuit rating techniques. These have been compared and refined with input gained from field data. By eliminating simplifications from existing methods, it has been possible to identify ways of increasing the utilisation of the existing network. In addition the new techniques allow examination of the potential benefits of future developments in cable technology. Benefits are being derived from this work on both a day to day and strategic planning levels. For instance, by re-evaluating the current rating method for cables installed in tunnels, it has proved possible to consider the benefits from co-locating more cables in one tunnel to best use these expensive assets. The application of this method has allowed the quantification of the benefits which might be available from next generation cable technologies, enabling the prioritisation of future research effort in cable materials. Upon completion, the knowledge gained from this work is to be used to revise the international standard on calculating current ratings in cable tunnels. Techniques such as these underpin the concept of smart grids with improved operational flexibility and capability. Simultaneously the requirement to build expensive new components into the network is limited, whilst still meeting the need to supply ever increasing volumes of power across the country

    Prognostic indication of power cable degradation

    No full text
    The reliability and the health performance of network assets are of a great interest due to power network operators. This project investigates methods of developing a prognostic capability for evaluating the health and long term performance of ageing distribution cable circuits. From the instant of installation and operation, the insulating materials of a cable will begin to age as a result of a combination of mechanical, thermal and electrical factors. Development of simulation models can significantly improve the accuracy of prognostics, allowing the targeting of maintenance and reduction of in service failures [1]. Real-time measurements taken close to underground cables can update the simulation models giving a more accurate prognostic model.Currently the project investigates a thermal prognostic simulation model which will predict the likely temperature impact on a cable at burial depth according to weather conditions and known loading. Anomalies of temperature measurements along the cable compared to predicted temperatures will indicate a possible degradation activity in a cable. An experimental surface trough has been set up where operation of power cables is simulated with a control system which is able to model any cable loading. The surface temperature of the cable is continuously monitored as well as the weather conditions such as solar radiation, soil moisture content, wind speed, humidity, rainfall and air-temperature<br/

    Implementation of a novel online condition monitoring thermal prognostic indicator system

    No full text
    This research aims to develop a reliable and robust online condition monitoring thermal prognostic indicator system which will reduce the risk of failures in a Power System Network. Real-time measurements (weather conditions, temperature of the cable joints or terminations, loading demand) taken close to underground cable will update the prognostic simulation model. Anomalies of the measurements along the cable will be compared with the predicted ones hence indicating a possible degradation activity in the cable. The use of such systems within a power networks will provide a smarter way of prognostic condition monitoring in which you measure less and model more. The use of suggested thermal models will enable the power network operators to maximize asset utilization and minimize constraint costs in the system

    The development of prognostic tools for MV cable circuits

    No full text
    Cable failures are disruptive, costly to repair and have a serious impact on customer confidence. Thus developing a reliable on-line prognostic tool is of a great interest. An experimental setup has been created to develop a new prognostic thermal model for MV underground cables. This paper introduces a thermal prognostic simulation model based on Support Vector Regression Algorithm which predicts the likely temperature along the cable thirty minutes into the future and is able to detect temperature anomalies which can indicate upcoming failures

    Numerical thermo-mechanical stress analysis for HVDC cables

    No full text
    Calculating the current rating of paper insulated HVDC cables under low ambient temperatures can require additional mechanical considerations. Under rapid cable heating or cooling processes, an extremely high mechanical stress or a rapid pressure drop can develop due to the strong impregnant thermal expansion or contraction respectively. This may cause plastic deformation of the sheath or the creation of voids. This paper demonstrates the importance of this thermo-mechanical constraint through the application of finite element modelling techniques which permit a coupling of the thermal and mechanical properties within the cable. The results show that the FEA technique can be fully applied to analyze the internal thermo-mechanical stress distribution of the cable and calculate the resulting mechanical stress-limited rating, which provides an alternative to an analytical method previously developed by the same author

    The thermal regime around buried submarine high voltage cables

    No full text
    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70°C and are typically buried 1–2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near surface sediments are poorly understood. We present temperature measurements from a 2D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments—coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples, to measure the time-dependent 2D temperature distributions. The observed and corresponding Finite Element Method (FEM) simulations of the steady state heat flow regimes, and normalised radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of &gt;10°C up to 40 cm from the source of 60°C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between c. 20°C and 36°C above ambient, with &gt;10°C heat increases occurring over a metre from the source of 55°C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (c. 7°C) operating temperatures and reaching temperatures of up to 18°C above ambient at a metre from the source at surface temperatures of only 18°C. These findings are important for the surrounding near surface environments experiencing such high temperatures and may have significant implications for chemical and physical processes operating at the grain and sub-grain scale; biological activity at both micro-faunal and macro-faunal levels; and indeed the operational performance of the cables themselves, as convective heat transport would increase cable current ratings, something neglected in existing standards

    SSIMS Molecular Selective Imaging: a new diagnostic tool to investigate metal passivators in scrapped transformers

    No full text
    In every high voltage grid, the replacement of assets is a slow but steady process that guarantees long-term reliability of the power distribution networks. The prioritisation of such interventions is based on complex rating criteria specifically designed to highlight potential issues of certain machines (or families of machines) in need of care. Given the tremendous costs of operations such as the replacement of a power transformer it is not surprising to observe constant efforts devoted to finding new and better monitoring and diagnostic tools. These are capable of delivering invaluable information about the conditions of a transformer, in service or after it is either failed or proactively scrapped, allowing a better comprehension of underlying chemical-physical phenomena occurring. Ideally, advanced monitoring and diagnostic tools should ultimately result in improved rating parameters to be applied in the evaluation of future interventions. This feasibility study evaluates the use of static secondary ion mass spectrometry (SSIMS) molecular selective imaging as a diagnostic tool for power transformer. SSIMS is herein demonstrated to be able to assess, without doubts, the presence and integrity of the passivation layer produced by Irgamet®39 on copper surfaces in laboratory tests. The technique has also been tested on real samples collected from one of the phases of a 400/275kV autotransformer proactively scrapped and proved to be applicable without significant sample preparation. The possibility of its use in the study of the distribution of Irgamet®39 across the windings is also demonstrated. Further development of SSIMS as a diagnostic tool would be significantly increasing the grade of detail at which scrapped/failed units could be inspected. A better understanding on how the operating conditions or the design of a transformer can affect the anticorrosion protection layer at the molecular level would open the way to significant ad hoc improvements of both operative guidelines and rating criteria for power transformers

    Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study

    Get PDF
    The static and dynamic structure of liquid Al is studied using the orbital free ab-initio molecular dynamics method. Two thermodynamic states along the coexistence line are considered, namely T = 943 K and 1323 K for which X-ray and neutron scattering data are available. A new kinetic energy functional, which fulfills a number of physically relevant conditions is employed, along with a local first principles pseudopotential. In addition to a comparison with experiment, we also compare our ab-initio results with those obtained from conventional molecular dynamics simulations using effective interionic pair potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR

    Learning how to model ecosystem trade-offs at the farm scale

    Get PDF
    Paper from: International Environmental Modelling and Software Society (iEMSs) 2010 International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada David A. Swayne, Wanhong Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.) http://www.iemss.org/iemss2010/index.php?n=Main.ProceedingsThe full conference proceedings are available from: http://www.iemss.org/iemss2010/The ecosystem service framework provides a forum for scientists from a range of disciplines to communicate and work together alongside other key stakeholders. However to be effective, place-based comparison of the tradeoffs of ecosystem services need further development. These place-based comparisons are vital in agricultural systems due to the increasing global demand for food production, coupled with the realization that this should be achieved with minimal negative impact on the environment. The farm is the logical unit of management in agricultural systems and hence there is a need for ecosystem tradeoff assessments at the farm scale. We have carried out a literature review of thetradeoffs in the delivery of ecosystem services from intensively managed temperate grassland systems. Building on this work, we are now setting up a farm scale experiment to examine the tradeoffs, identified from the refereed literature, as requiring further investigation due to either limited or conflicting evidence. To facilitate an improved understanding of these tradeoffs we need to learn how to model them, based on previous and current modelling frameworks and coupled with improved knowledge of international best practice. Fundamentally, this requires a dialogue between modellers and field scientist

    A review of the impacts of degradation threats on soil properties in the UK

    Get PDF
    National governments are becoming increasingly aware of the importance of their soil resources and are shaping strategies accordingly. Implicit in any such strategy is that degradation threats and their potential effect on important soil properties and functions are defined and understood. In this paper, we aimed to review the principal degradation threats on important soil properties in the UK, seeking quantitative data where possible. Soil erosion results in the removal of important topsoil and, with it, nutrients, C and porosity. A decline in soil organic matter principally affects soil biological and microbiological properties, but also impacts on soil physical properties because of the link with soil structure. Soil contamination affects soil chemical properties, affecting nutrient availability and degrading microbial properties, whilst soil compaction degrades the soil pore network. Soil sealing removes the link between the soil and most of the ‘spheres’, significantly affecting hydrological and microbial functions, and soils on re-developed brownfield sites are typically degraded in most soil properties. Having synthesized the literature on the impact on soil properties, we discuss potential subsequent impacts on the important soil functions, including food and fibre production, storage of water and C, support for biodiversity, and protection of cultural and archaeological heritage. Looking forward, we suggest a twin approach of field-based monitoring supported by controlled laboratory experimentation to improve our mechanistic understanding of soils. This would enable us to better predict future impacts of degradation processes, including climate change, on soil properties and functions so that we may manage soil resources sustainably
    • …
    corecore