1,154 research outputs found

    Invited: High-level design methods for hardware security: Is it the right choice?

    Get PDF
    Due to the globalization of the electronics supply chain, hardware engineers are increasingly interested in modifying their chip designs to protect their intellectual property (IP) or the privacy of the final users. However, the integration of state-of-the-art solutions for hardware and hardware-assisted security is not fully automated, requiring the amendment of stable tools and industrial toolchains. This significantly limits the application in industrial designs, potentially affecting the security of the resulting chips. We discuss how existing solutions can be adapted to implement security features at higher levels of abstractions (during high-level synthesis or directly at the register-transfer level) and complement current industrial design and verification flows. Our modular framework allows designers to compose these solutions and create additional protection layers

    Optimizing the Use of Behavioral Locking for High-Level Synthesis

    Get PDF
    The globalization of the electronics supply chain requires effective methods to thwart reverse engineering and IP theft. Logic locking is a promising solution, but there are many open concerns. First, even when applied at a higher level of abstraction, locking may result in significant overhead without improving the security metric. Second, optimizing a security metric is application-dependent and designers must evaluate and compare alternative solutions. We propose a meta-framework to optimize the use of behavioral locking during the high-level synthesis (HLS) of IP cores. Our method operates on chip’s specification (before HLS) and it is compatible with all HLS tools, complementing industrial EDA flows. Our meta-framework supports different strategies to explore the design space and to select points to be locked automatically. We evaluated our method on the optimization of differential entropy, achieving better results than random or topological locking: 1) we always identify a valid solution that optimizes the security metric, while topological and random locking can generate unfeasible solutions; 2) we minimize the number of bits used for locking up to more than 90% (requiring smaller tamper-proof memories); 3) we make better use of hardware resources since we obtain similar overheads but with higher security metric

    TaintHLS: High-Level Synthesis For Dynamic Information Flow Tracking

    Get PDF
    Dynamic Information Flow Tracking (DIFT) is a technique to track potential security vulnerabilities in software and hardware systems at run time. Untrusted data are marked with tags (tainted), which are propagated through the system and their potential for unsafe use is analyzed to prevent them. DIFT is not supported in heterogeneous systems especially hardware accelerators. Currently, DIFT is manually generated and integrated into the accelerators. This process is error-prone, potentially hurting the process of identifying security violations in heterogeneous systems. We present TAINTHLS, to automatically generate a micro-architecture to support baseline operations and a shadow microarchitecture for intrinsic DIFT support in hardware accelerators while providing variable granularity of taint tags. TaintHLS offers a companion high-level synthesis (HLS) methodology to automatically generate such DIFT-enabled accelerators from a high-level specification. We extended a state-of-the-art HLS tool to generate DIFT-enhanced accelerators and demonstrated the approach on numerous benchmarks. The DIFT-enabled accelerators have negligible performance and no more than 30% hardware overhead

    Not All Fabrics Are Created Equal: Exploring eFPGA Parameters for IP Redaction

    Get PDF
    Semiconductor design houses rely on third-party foundries to manufacture their integrated circuits (ICs). While this trend allows them to tackle fabrication costs, it introduces security concerns as external (and potentially malicious) parties can access critical parts of the designs and steal or modify the intellectual property (IP). Embedded field-programmable gate array (eFPGA) redaction is a promising technique to protect critical IPs of an ASIC by redacting (i.e., removing) critical parts and mapping them onto a custom reconfigurable fabric. Only trusted parties will receive the correct bitstream to restore the redacted functionality. While previous studies imply that using an eFPGA is a sufficient condition to provide security against IP threats like reverse-engineering, whether this truly holds for all eFPGA architectures is unclear, thus motivating the study in this article. We examine the security of eFPGA fabrics generated by varying different FPGA design parameters. We characterize the power, performance, and area (PPA) characteristics and evaluate each fabric’s resistance to Boolean satisfiability (SAT)-based bitstream recovery. Our results encourage designers to work with custom eFPGA fabrics rather than off-the-shelf commercial FPGAs and reveals that only considering a redaction fabric’s bitstream size is inadequate for gauging security

    Activity of N-Acetylcysteine Alone and in Combination with Colistin against Pseudomonas aeruginosa Biofilms and Transcriptomic Response to N-Acetylcysteine Exposure

    Get PDF
    Chronic colonization by Pseudomonas aeruginosa is critical in cystic fibrosis (CF) and other chronic lung diseases, contributing to disease progression. Biofilm growth and a propensity to evolve multidrug resistance phenotypes drastically limit the available therapeutic options. In this perspective, there has been growing interest in evaluating combination therapies, especially for drugs that can be administered by nebulization, which allows high drug concentrations to be reached at the site of infections while limiting systemic toxicity. Here, we investigated the potential antibiofilm activity of N-acetylcysteine (NAC) alone and in combination with colistin against a panel of P. aeruginosa strains (most of which are from CF patients) and the transcriptomic response of a P. aeruginosa CF strain to NAC exposure. NAC alone (8,000 mg/L) showed a limited and strain-dependent antibiofilm activity. Nonetheless, a relevant antibiofilm synergism of NAC-colistin combinations (NAC at 8,000 mg/L plus colistin at 2 to 32 mg/L) was observed with all strains. Synergism was also confirmed with the artificial sputum medium model. RNA sequencing of NAC-exposed planktonic cultures revealed that NAC (8,000 mg/L) mainly induced (i) a Zn21 starvation response (known to induce attenuation of P. aeruginosa virulence), (ii) downregulation of genes of the denitrification apparatus, and (iii) downregulation of flagellar biosynthesis pathway. NAC-mediated inhibition of P. aeruginosa denitrification pathway and flagellum-mediated motility were confirmed experimentally. These findings suggested that NAC-colistin combinations might contribute to the management of biofilm-associated P. aeruginosa lung infections. NAC might also have a role in reducing P. aeruginosa virulence, which could be relevant in the very early stages of lung colonization. © 2022 Valzano et al

    Spectrum of germline pathogenic variants in brca1/2 genes in the apulian southern italy population: Geographic distribution and evidence for targeted genetic testing

    Get PDF
    BRCA1/2-associated hereditary breast and ovarian cancer is the most common form of hereditary breast and ovarian cancer and occurs in all ethnicities and racial populations. Different BRCA1/BRCA2 pathogenic variants (PVs) have been reported with a wide variety among populations. In this study, we retrospectively analyzed prevalence and geographic distribution of pathogenic germline BRCA1/2 variants in families from Apulia in southern Italy and evaluated the genotype–phenotype correlations. Data were collected from Oncogenetic Services present in Apulian hospitals and a shared database was built containing Apulian native probands (n = 2026) that had undergone genetic testing from 2004 to 2019. PVs were detected in 499 of 2026 (24.6%) probands and 68.5% of them (342 of 499) were in the BRCA1 gene. We found 65 different PVs in BRCA1 and 46 in BRCA2. There were 10 most recurrent PVs and their geographical distribution appears to be significantly specific for each province. We have assumed that these PVs are related to the historical and geopolitical changes that occurred in Apulia over time and/or to a “founder effect”. Broader knowledge of BRCA1/2 prevalence and recurring PVs in specific geographic areas could help establish more flexible genetic testing strategies that may enhance our ability to detect high-risk subjects

    u-PAR expression in cancer associated fibroblast: new acquisitions in multiple myeloma progression

    Get PDF
    BACKGROUND: Multiple Myeloma (MM) is a B-cell malignancy in which clonal plasma cells progressively expand within the bone marrow (BM) as effect of complex interactions with extracellular matrix and a number of microenvironmental cells. Among these, cancer-associated fibroblasts (CAF) mediate crucial reciprocal signals with MM cells and are associated to aggressive disease and poor prognosis. A large body of evidence emphasizes the role of the urokinase plasminogen activator (u-PA) and its receptor u-PAR in potentiating the invasion capacity of tumor plasma cells, but little is known about their role in the biology of MM CAF. In this study, we investigated the u-PA/u-PAR axis in MM-associated fibroblasts and explore additional mechanisms of tumor/stroma interplay in MM progression. METHODS: CAF were purified from total BM stromal fraction of 64 patients including monoclonal gammopathy of undetermined significance, asymptomatic and symptomatic MM, as well as MM in post-treatment remission. Flow cytometry, Real Time PCR and immunofluorescence were performed to investigate the u-PA/u-PAR system in relation to the level of activation of CAF at different stages of the disease. Moreover, proliferation and invasion assays coupled with silencing experiments were used to prove, at functional level, the function of u-PAR in CAF. RESULTS: We found higher activation level, along with increased expression of pro-invasive molecules, including u-PA, u-PAR and metalloproteinases, in CAF from patients with symptomatic MM compared to the others stages of the disease. Consistently, CAF from active MM as well as U266 cell line under the influence of medium conditioned by active MM CAF, display higher proliferative rate and invasion potential, which were significantly restrained by u-PAR gene expression inhibition. CONCLUSIONS: Our data suggest that the stimulation of u-PA/u-PAR system contributes to the activated phenotype and function of CAF during MM progression, providing a biological rationale for future targeted therapies against MM

    In Car Audio

    Get PDF
    This chapter presents implementations of advanced in Car Audio Applications. The system is composed by three main different applications regarding the In Car listening and communication experience. Starting from a high level description of the algorithms, several implementations on different levels of hardware abstraction are presented, along with empirical results on both the design process undergone and the performance results achieved

    High prevalence of carriage of mcr-1-positive enteric bacteria among healthy children from rural communities in the Chaco region, Bolivia, september to october 2016

    Get PDF
    Background: The mcr-1 gene is a transferable resistance determinant against colistin, a last-resort anti-microbial for infections caused by multi-resistant Gram-negatives. Aim: To study carriage of antibiotic-resistant bacteria in healthy school children as part of a helminth control and antimicrobial resistance survey in the Bolivian Chaco region. Methods: From September to October 2016 we collected faecal samples from healthy children in eight rural villages. Samples were screened for mcr-1-and mcr-2 genes. Antimicrobial susceptibility testing was performed, and a subset of 18 isolates representative of individuals from different villages was analysed by whole genome sequencing (WGS). Results: We included 337 children (mean age: 9.2 years, range: 7–11; 53% females). The proportion of mcr-1 carriers was high (38.3%) and present in all villages; only four children had previous antibiotic exposure. One or more mcr-1-positive isolates were recovered from 129 positive samples, yielding a total of 173 isolates (171 Escherichia coli, 1 Citrobacter europaeus, 1 Enterobacter hormaechei). No mcr-2 was detected. Co-resistance to other antimicrobials varied in mcr-positive E. coli. All 171 isolates were susceptible to carbapenems and tigecycline; 41 (24.0%) were extended-spectrum β-lactamase producers and most of them (37/41) carried bla CTX - M -type genes. WGS revealed heterogeneity of clonal lineages and mcr-genetic supports. Conclusion: This high prevalence of mcr-1-like carriage, in absence of professional exposure, is unexpected. Its extent at the national level should be investigated with priority. Possible causes should be studied; they may include unrestricted use of colistin in veterinary medicine and animal breeding, and importation of mcr-1-positive bacteria via food and animals

    Pyrolysis Gas Composition for a Phenolic Impregnated Carbon Ablator Heatshield

    Get PDF
    Published physical properties of phenolic impregnated carbon ablator (PICA) are compiled, and the composition of the pyrolysis gases that form at high temperatures internal to a heatshield is investigated. A link between the composition of the solid resin, and the composition of the pyrolysis gases created is provided. This link, combined with a detailed investigation into a reacting pyrolysis gas mixture, allows a consistent, and thorough description of many of the physical phenomena occurring in a PICA heatshield, and their implications, to be presented
    • …
    corecore