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ABSTRACT
Due to the globalization of the electronics supply chain, hardware
engineers are increasingly interested in modifying their chip de-
signs to protect their intellectual property (IP) or the privacy of the
final users. However, the integration of state-of-the-art solutions
for hardware and hardware-assisted security is not fully automated,
requiring the amendment of stable tools and industrial toolchains.
This significantly limits the application in industrial designs, po-
tentially affecting the security of the resulting chips. We discuss
how existing solutions can be adapted to implement security fea-
tures at higher levels of abstractions (during high-level synthesis
or directly at the register-transfer level) and complement current
industrial design and verification flows. Our modular framework
allows designers to compose these solutions and create additional
protection layers.

1 INTRODUCTION
The cost of chip manufacturing is increasing exponentially as the
technology scales down. Only a few companies can afford such
costs, forcing many semiconductor design houses to become fab-
less. A fab-less design house has the core of its business in the design
of the integrated circuit, outsourcing the manufacturing step to a
third-party company. On the one hand, this process is cost-efficient
and allows the co-existence of many semiconductor players along
with only a few foundries. On the other hand, it opens up several
security concerns in the semiconductor supply chain, as shown
in Figure 1. For example, malicious foundry employees have access
to the design files and can reverse engineer the functionality to
create illegal copies (also with the help of activated chips coming
from the market) [13]. So, many design houses are integrating
security countermeasures in their designs at different abstraction
levels [4].

To hide the chip functionality, designers can use two classes of
approaches: logic locking and (e)FPGA redaction. In the former,
the designer adds extra logic, controlled by a new input (key), such
that the circuit behaves correctly only when the correct input key
is provided [13]. In the latter, parts of the circuit are replaced by
embedded FPGAs such that the foundry has no clue about the func-
tionality that will be implemented on the reconfigurable logic [2].
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Figure 1: Security threats in the semiconductor supply chain.

While these approaches have several advantages, designers need
to face multiple challenges to integrate them into EDA flows. First,
the protection of the circuit must be semantically meaningful. Gate-
level locking can only protect the structure of the circuit after it
has been already synthesized (and optimized) with logic synthesis.
Raising the abstraction level is thus to operate on and protect the
circuit behavior rather than its structure [9]. Second, attackers have
developed many attacks for breaking the protection (i.e., recover-
ing the locking key or the eFPGA bitstream), including machine
learning-based [14] and SAT-based attacks [15]. Such protections
must be in continuous evolution to make the life of the attackers
exponentially harder. Third, adding the logic for logic locking or
the extra eFPGAs introduces significant overhead to the chip. To
limit such overhead, designers need to carefully select where to
add the extra logic or decide how many and which eFPGA should
be added without compromising the security of the design [7].

In this paper, we present an EDA flow to integrate high-level
solutions for hardware IP protection. In particular, we operate
at the register-transfer level to better identify the semantics to be
protected before further optimizations. Our proposed flow com-
bines RTL locking and FPGA redaction to create a single solution
that is compatible with standard industrial design flows. Our main
contributions are:
• we propose a unified design flow that partitions the design,
applies the proper countermeasures, recreates a final description
ready for synthesis;

• we integrate state-of-the-art solutions for RTL locking and
FPGA customization to protect selected parts of the design;

• we discuss the major challenges for this approach.
Our approach can enable further research at the system level, broad-
ening the spectrum of solutions that can be explored and evaluated.

2 BACKGROUND
2.1 Threat Model
In this work, we aim at protecting the hardware intellectual prop-
erty (IP) against an untrusted foundry. The attackers have access to
the IC’s layout files (GDSII) from which they can perform reverse
engineering to extract the corresponding RTL [11, 12]. They can
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also perform simulations on the resulting RTL to get information
about the output results. They may have access to a working chip
(oracle), which can be obtained by the (black) market, to study I/O
relationships and help key recovery.

2.2 Logic Locking
Logic locking is a technique to hide and alter the functionality of
a circuit. During the design phase, the circuit is modified to insert
additional logic that is controlled by a new input, called the locking
key, which is known to the designer but not given to the foundry.
In this way, even if the circuit is reverse engineered, the correct
functionality cannot be reproduced without having the right key.

Logic locking can be applied at different abstraction levels, includ-
ing at the specification level [8], during high-level synthesis [10],
at the register-transfer level [9], and directly on gate-level netlists.
The general idea is that, with a key of 𝐾 bits, the probability of
guessing the correct functionality (without any additional informa-
tion) is 2−𝐾 . So, designers must define their locking protections so
all alternatives are equally plausible.

However, logic locking solutions have been widely studied and
attacked. When the attackers have only the locked description,
they can analyze it to identify some functional or structural bias
and use it to get information about the key. Functional bias can
be identified in the probability distribution of the outputs. For
example, a trivial locking schema can always emit 0 on the outputs
except when the correct key is provided. Even if the circuit behaves
correctly only with the right key, this can be clearly retrieved by
the attacker. Designers must corrupt the output with a uniform
probability of getting 0 or 1 so that, even with a brute force attack,
no information is available on the key. Structural attacks include
re-synthesis and machine learning-based to identify (and eliminate)
the extra logic [14]. When the attackers have an oracle, they can
study the correct input/output relationships. To do so, they can
formulate the key recovery problem as an SAT problem [15] to
identify distinguishable input patterns and rule out incorrect keys.

2.3 FPGA Redaction
Embedded FPGAs are reprogrammable devices that can be inte-
grated into integrated circuits to hide the entire functionality of
selected modules. Protection is given by the reprogrammability
feature of such components. During manufacturing, the FPGA does
not contain any information about the functionality that can be
implemented. It will be inserted only later by uploading the proper
bitstream, i.e., the FPGA configuration file. So an attacker must
recover the entire bitstream to replicate the correct functionality.
Conversely, an FPGA can load any valid bitstream1, which does not
necessarily implement the original functionality.

Recent studies have shown that the security of eFPGA redaction
is more related to the parameters of the eFPGA instance that is
added to the design rather than the modules that are implemented
on it [1, 2]. However, the designers have to maximize the utilization
of the reconfigurable logic and the I/O pins. Hence, using FPGA
customization tools [5, 16] is a viable solution for creating tailored
FPGAs that implement the redacted modules.

1A valid bitstream is an FPGA configuration that creates an admissible functionality
between input and output pins.
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Figure 2: Design framework to apply hardware IP protection
at high abstraction levels

3 HOW TO RAISE THE ABSTRACTION LEVEL
FOR HARDWARE IP PROTECTION

To protect the hardware IP against an untrusted foundry, we pro-
pose a framework that allows the designers to combine several
system-level protection techniques, including RTL locking and
FPGA redaction, in an industrial design flow. Our framework, which
is shown in Figure 2, is a pre-processing step before logic synthesis
(see Figure 1). It starts from an RTL description of the chip to be
fabricated and some designers’ parameters (e.g., the information
about the locking key, the eFPGA parameters, and the most critical
outputs to be “protected”). The framework produces the implemen-
tation files of the chip, i.e., a synthesizable RTL description of the
circuit that includes both the ASIC part and the eFPGA netlists,
ready for the subsequent logic and physical synthesis steps. The
framework is composed of the following steps:

(1) ASIC/FPGA partitioning: it determines which modules will
be implemented directly in ASIC and which ones will be imple-
mented on the reconfigurable logic of the eFPGAs.

(2) RTL locking: for the parts to be implemented directly in ASIC,
it applies RTL locking to hide their semantics.

(3) eFPGA creation: for the parts to be mapped onto reconfig-
urable logic, it customizes the eFPGA instances to be included
in the chip.

(4) System integration: the two descriptions are merged into a
unique one to be passed to logic synthesis and physical design
steps. This step also manages the additional logic to provide
(and protect) the locking key or to upload the configuration
bitstream.

In the following, we detail all these parts.We show how it is possible
to integrate state-of-the-art techniques that operate at higher levels
of abstraction. All techniques operate on hardware descriptions, so
it is possible to use industrial formal verification methods to certify
that the chip behaves correctly if and only if the correct “secrets”
(i.e., locking key and FPGA configuration bitstreams) are provided.
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Figure 3: Three ASSURE locking techniques [9]: (a) constants, (b) operations, and (c) branches.

3.1 ASIC/FPGA Partitioning
This phase receives the RTL description of the chip to be fabricated
and the design constraints. It aims at identifying the blocks that
are more critical for the selected outputs. Indeed, not all inputs
and outputs are equally important from the security viewpoint. For
example, the external interfaces may implement standard protocols
(like AXI4 transactions) and they do not necessitate IP protection.
Conversely, the data outputs of digital filters may reveal proprietary
information on its response.

The framework first lists all modules of the designer and initial-
izes an initial score to zero for each of them. A “bonus score” is
also assigned to each selected output. In this way, it is possible to
differentiate them. Then, the framework builds a system dependence
graph that captures the I/O relationships of the design. This rep-
resentation is used to identify which modules have a direct effect
on each of the selected outputs. Indeed, let 𝑏𝑖 the bonus score as-
sociated with the output 𝑖 . The score of each module that has an
effect on the output 𝑖 will be increased by 𝑏𝑖 . After this procedure,
all modules are ranked based on the resulting scores and the top
ones are selected for eFPGA redaction. The top-score modules may
be the ones that have an effect on multiple selected outputs (i.e.,
they received more bonus scores) or have an effect on more critical
outputs (i.e., they received higher bonus scores). The number of
modules to be selected is defined by the user and can be further
refined by additional constraints (e.g., the maximum number of
input and output pins).

The selected modules are forwarded to the eFPGA creation step,
while the ones will be implemented directly in ASIC, possibly with
an additional level of protection given by RTL locking.

3.2 RTL Locking
Our RTL locking flow operates directly on synthesizable RTL de-
scriptions. In this way, it fits within existing EDA flows and the
same constraints as the original design (e.g., clock period, pin as-
signments, etc.) Designers can also use formal verification tools
to check whether the resulting RTL is equivalent to the original
design if and only if the correct key is used. We apply the following
state-of-the-art RTL locking techniques [9]:

(1) Constant locking: We protect confidential constants by re-
placing them entirely with key bits carrying constant infor-
mation. For example, we rewrite the RTL operation 𝑜𝑢𝑡 =

𝑖𝑛 + 8’b11101001 as 𝑜𝑢𝑡 = 𝑖𝑛 +𝐾𝑐 where 𝐾𝑐 is the 8-bit constant
stored in the locking key. The attacker has 28 possibilities to
get a correct 𝑜𝑢𝑡 for a given 𝑖𝑛 value.

(2) Operation locking: We introduce a multiplexer to decide be-
tween the correct operation and a dummy operation based on
the value of one key bit. For example, we lock the operation
𝑜𝑢𝑡 = 𝑖𝑛1 + 𝑖𝑛2 as 𝑜𝑢𝑡 = 𝐾𝑜 ? (𝑖𝑛1 + 𝑖𝑛2) : (𝑖𝑛1 - 𝑖𝑛2). Only the
correct value of 𝐾𝑜 enables the propagation of the correct result.

(3) Branch locking: In branch obfuscation, we perform XOR based
locking on the original condition followed by logical inversion if
key-bit is 1. For e.g., we rewrite the original condition 𝑖𝑛1 > 𝑖𝑛2
as (𝑖𝑛1 ≤ 𝑖𝑛2)⊕𝐾𝑏 with locking key-bit𝐾𝑏 = 1. An attacker can-
not deduce from the statement whether the original condition
was > or ≤.

The application of the three techniques is shown in Figure 3. The
standard flow operates by locking the elements in topological order
until the maximum number of available key bits is reached. The
approach can be implemented by a depth-first visit of the abstract
syntax tree (AST), which is directly extracted by parsing the RTL
description. After modifying the AST, the corresponding RTL is
generated. The resulting design has the same external interface
as the original module, except for an additional input port that
is connected to the place where the locking key will be stored
(see Section 3.4). The key is composed of two parts: one contains
the constant information extracted from the design and the other
contains the key bits for locking operations and branches.

The same approach can be extended with methods for better
selecting the locking points [3] or with additional logic to protect
the locking key against SAT attacks [6]. These methods provide
additional protections against a wide range of attacks. For example,
the same system dependence graph used for ASIC/FPGA partition-
ing can be reused to identify the effects of each RTL statement on
the outputs, preferring the ones that can lead to more corruptibil-
ity [3]. When the designers aim at protecting the design against
oracle-based attacks, they can “isolate” a selected portion of the
locking key in test mode so that even the activated chip is not able
to guarantee correct outputs, making the oracle untrustable.

3.3 eFPGA Creation
Once the designers have selected modules to be redacted, it is nec-
essary to create the corresponding eFPGA instances. For doing this,
we use open-source FPGA customization frameworks (like OpenF-
PGA [16] or FABulous [5]). For example, OpenFPGA can start from
the description of one or more HDL modules and the fabric param-
eters, and create the netlist (and the associated bitstream) of the
corresponding eFPGA instance. An example of the OpenFPGA flow
is shown in Figure 4. This FPGA instance contains the minimum
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Figure 4: Our eFPGA redaction flow based on OpenFPGA for
FPGA customization [2, 7].

number of configurable blocks that can implement the given mod-
ule(s). Using FPGA customization tools allow us to create instances
that (1) have less overhead than off-the-shelf FPGAs and (2) have
maximum utilization of both I/O pins and configurable logic blocks,
which guarantees high resilience to SAT attacks [1, 2].

3.4 System Integration
The last step of our flow requires integrating the two parts (ASIC
and eFPGAs) to create a single hardware description for logic syn-
thesis and physical design, adding the extra logic for interfacing
the two parts and managing the locking key.

In this phase, there are two major EDA issues: (1) the designers
need to remap the in/out pins of the newly-created eFPGA onto
the original wires to ensure functional correctness, and (2) ASIC
and eFPGA may run at different clock frequencies and they must
be properly interfaced to obtain a working chip.

For the functional integration of the eFPGA instances, the design-
ers need to identify the wires that were connecting the design with
the modules that have been replaced with eFPGAs. This process
can be automated thanks to the artifacts produced by the FPGA cus-
tomization tools and FPGA pins that are not remapped to original
wires are set to 0. These pins are clearly associated with reconfig-
urable logic that is not relevant to the redacted design, reducing
the number of configuration bits that must be recovered by the
attackers and so reducing the overall security of the design. This is
why it is important to maximize the utilization of the FPGA pins.

From the EDA viewpoint, integrating the eFPGA instances re-
quires evaluating the critical paths introduced by the reconfigurable
logic. To avoid slowing down the entire chip, the designers may
isolate the FPGA instances and run time with a different clock
frequency. To create a design with multiple frequency domains,
designers may need to introduce synchronizers at the boundaries
of each domain. On the one hand, this can solve the integration
issue but it may introduce time/area overhead in the design. So,
this process has implications for the selection of the modules to
be redacted. The back-annotation of this information for further
refining the selection is an ongoing research effort.

4 DISCUSSION AND CONCLUSIONS
In this work, we presented a framework to raise the abstraction level
of hardware IP protection to the register-transfer level. Working at
RTL enables the integration into established industrial design flows
and, at the same time, combine several techniques for protecting the
semantics of the circuit more efficiently. In particular, we partition

the given design into two parts: one to be implemented directly in
ASIC and the other to be programmed onto an embedded FPGA that
is added to the chip design. While the former is more cost-efficient,
it can be reverse-engineered and so we apply RTL locking for its
protection. The latter part leverages the reprogrammability fea-
tures of FPGA devices to completely hide the functionality during
manufacturing. However, the integration of eFPGAs is still complex
and expensive. So, the correct partitioning is still an open issue to
trade-off security and hardware cost. To answer the question that
opened this paper, we strongly believe that high-level methods are
the right choice for hardware IP protection. Indeed, reasoning at
higher levels of abstraction allows designers to explore more
alternatives and restructure the chip’s design accordingly
to the security metrics. Also, designers can better analyze the
designs, identify more easily the semantics to be protected, and
apply stronger and cost-effective protections.
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