
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 1

TaintHLS: High-Level Synthesis For Dynamic
Information Flow Tracking

Christian Pilato, Member, IEEE, Kaijie Wu, Member, IEEE, Siddharth Garg, Member, IEEE,
Ramesh Karri, Senior Member, IEEE, and Francesco Regazzoni, Member, IEEE

Abstract—Dynamic Information Flow Tracking (DIFT) is a
technique to track potential security vulnerabilities in software
and hardware systems at run time. Untrusted data are marked
with tags (tainted), which are propagated through the system
and their potential for unsafe use is analyzed to prevent them.
DIFT is not supported in heterogeneous systems especially
hardware accelerators. Currently, DIFT is manually generated
and integrated into the accelerators. This process is error-prone,
potentially hurting the process of identifying security violations
in heterogeneous systems.

We present TAINTHLS, to automatically generate a micro-
architecture to support baseline operations and a shadow microar-
chitecture for intrinsic DIFT support in hardware accelerators
while providing variable granularity of taint tags. TaintHLS
offers a companion high-level synthesis (HLS) methodology to
automatically generate such DIFT-enabled accelerators from a
high-level specification. We extended a state-of-the-art HLS tool
to generate DIFT-enhanced accelerators and demonstrated the
approach on numerous benchmarks. The DIFT-enabled accel-
erators have negligible performance and no more than 30%
hardware overhead.

Index Terms—Dynamic Information Flow Tracking, High-
Level Synthesis, Hardware Security.

I. INTRODUCTION

THE increasing demand of high-performance systems is
pushing towards heterogeneous architectures that include

an increasing number of application-specific accelerators [1].
These accelerators are up to 100× energy-efficient relative
to the corresponding software implementations [2], [3], [4].
Advances in high-level synthesis (HLS) and reconfigurable
platforms are allowing creation of accelerators at low cost [5].
Applications are leveraging such accelerators by interleaving
hardware and software execution. Mobile devices with custom
hardware and FPGA-based cloud systems are running third-
party applications (e.g., Apple App Store and Google Play).
Such applications can leak personal information without au-
thorization [6] or can be compromised using software attacks
(e.g., code injection [7] and return-to-libc [8]). This requires

Manuscript received August 1, 2017; revised November 29, 2017 and
February 23, 2018; accepted April 10, 2018. This paper was recommended by
Associate Editor J. Xu. R. Karri is supported in part by NSF (A#: 1526405)
and CCS-AD. S. Garg is supported in part by an NSF CAREER Award
(A#: 1553419). S. Garg and R. Karri are both with the NYU Center for
Cybersecurity (cyber.nyu.edu) and supported in part by Boeing Corp.

C. Pilato and F. Regazzoni are with the Advanced Learning and Research
Institute (ALaRI), Faculty of Informatics, Università della Svizzera italiana
(USI), Lugano, Switzerland (Contact email: christian.pilato@usi.ch).

K. Wu, S. Garg, and R. Karri are with the NYU center for cybersecurity
(htt://cyber.nyu.edu), New York University (NYU), New York, NY, USA.

methods for identification of malicious uses. Dynamic Infor-
mation Flow Tracking (DIFT) measures the influence of po-
tentially untrustworthy external data by understanding how the
information is propagated by an application [9]. Untrusted data
is tainted and propagated through the application to monitor
and prevent its unsafe use. DIFT can monitor the control flow
of an application and prohibit execution of malicious code
when selected jump conditions become tainted [7].

Solutions have been proposed to implement DIFT in user
applications. They range from custom virtualization environ-
ments [6] to the integration of hardware support through
dedicated DIFT co-processors [10]. An attacker may exploit
the weaknesses in the accelerators or the heterogeneous com-
putation to compromise the system. BAMBU [11] and other
HLS tools generate accelerators with a memory architecture
that allows dynamic pointer resolution [12]. This enables the
acceleration of irregular applications [13]. Tampering with the
pointers passed to the accelerator can offer access to specific
memory locations (either within or outside the accelerator).
Accelerators without DIFT support may compromise the tag
propagation and identification of anomalies. Hence, solutions
have been proposed to study how the taint tags are exchanged
at the system level (e.g, between the processor and the ac-
celerators and with the memory components). WHISK allows
designers to evaluate the impact of DIFT in such heteroge-
neous systems [14]. However, the DIFT-enhanced accelerators
are not already available. DIFT support can be generated by
augmenting the Boolean gates with logic for information flow
tracking [15]. But this solution does not exploit high-level
information to reduce the hardware overhead.

Since DIFT support is expensive, understanding how to
efficiently implement DIFT inside accelerators is necessary to
offer security when executing applications on heterogeneous
architectures. Analyzing the flow of information must be
precise regardless of where the computation is performed (the
processor cores or the hardware accelerators). This paper is
the first one to address this issue by exploring the automatic
generation of DIFT-enhanced accelerators.

A. Contributions
TAINTHLS is a HLS-based solution enabling DIFT in hard-

ware accelerators. TAINTHLS automatically generates DIFT-
enhanced accelerators that can be integrated into heteroge-
neous architectures, while achieving the same DIFT as the
corresponding software solutions. Automated DIFT generation
can be configured to operate on taint tags at different granular-
ity (from variables to bits) to trade off resource overhead and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/162433497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
htt://cyber.nyu.edu

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 2

Heterogeneous SoC
Hardware Module

local
memory

local
memory

Controller + Datapath

Hardware Module

local
memory

M
em

or
y

In
te

rf
ac

e D
RA

M

C
on

tr
ol

le
r

CPU

Sy
st

em
 In

te
rc

on
ne

ct

DRAM

C
on

fig
ur

at
io

n
Re

gi
st

er
s

M
em

or
y

In
te

rf
ac

e
(a)

Datapath

reg_0 reg_1 reg_2

+

-

reg_3

mux

Controller
input_a input_b

return

local
memory

(b)

Fig. 1. Organization of a classical heterogeneous architecture with hardware accelerators (a) and microarchitecture of the each hardware module (b).

accuracy of taint analysis. After introducing the basic concepts
and the motivation for this work (Section II), we present three
contributions:

• an accelerator architecture that includes efficient hard-
ware support for taint propagation (Section III);

• an HLS-based methodology to automatically generate
accelerators with DIFT support starting from high-level
descriptions in C (Section IV);

• a comprehensive analysis of the DIFT-enhanced accel-
erators in terms of performance and resource overheads
(Section V).

We implemented TAINTHLS in BAMBU [11], a state-of-the-
art open-source HLS tool.

II. BACKGROUND

This section summarizes the background of the research
fields addressed by this paper. First, we describe the model of
the target architecture, focusing on hardware accelerators and
the challenges encountered designing them. Then, we present
the attack model that is considered and, finally, introduce Dy-
namic Information Flow Tracking, explaining how it secures
a computation.

A. Target Architecture Model

Fig. 1(a) shows an example heterogeneous architecture with
an accelerator and a processor core (CPU). Hardware acceler-
ators offload computation-intensive kernels of the application,
while the rest is executed by the CPU. The CPU prepares the
data for the accelerator and configures it by writing the proper
parameters into configuration registers. This configuration is
performed with memory-mapped operations, like the ones
performed by an OS device driver, on the interconnection
system (e.g., a bus or a network-on-chip). The DRAM is
accessed through a memory controller by both components.
The memory space is thus used to share data between the pro-
cessor and the accelerator. A hardware accelerator is tailored to
execute a specific functionality. It improves performance (up to
10-100×) and lowers energy consumption (up to 100-1,000×)
relative to the corresponding software implementation [16].
However, this comes at the cost of flexibility: the designer
must determine the accelerator microarchitecture at design

time to maximize performance. Similarly, executing an extra
function (e.g., DIFT) requires extra logic.

Complex accelerators are organized as submodules to man-
age the design complexity. Each module is based on the
classical Finite State Machine with Data (FSMD) model [17]
and includes three components as shown in Fig. 1(b):

• a controller, which determines the operations to execute
in each clock cycle. The control flow is represented by a
Finite State Machine (FSM) that sends control signals to
the datapath.

• a datapath, which is composed of functional units to ex-
ecute the computation and the registers to hold temporary
values during the computation. Multiplexers are used to
drive the values based on the control flow;

• memory elements, such as scratchpad memories (SPMs)
to locally store data and the memory interface to access
external data (e.g., in DRAM).

Functional units in the datapath exchange information through
registers, local SPMs, and the DRAM. Input data values are
provided in the configuration registers or stored in the DRAM
and accessed through the memory controller. Local SPMs
are heterogeneous and distributed memories, tailored on the
data structures to be stored. These memories enable multiple
memory operations in parallel on different data with fixed
latency, increasing hardware parallelism [5], [12], [18], [19].
These memory blocks impose constraints on the synthesis
process. For example, they have a limited number of input
and output ports; the operation schedule and the microarchi-
tecture to access the data must be accordingly created [12],
[18]. Memory architectures have been proposed to support
a wide range of memory operations, enabling computation
even on memory addresses (e.g., pointer arithmetic) [12]. Such
memory architectures create a daisy chain of all memory
components, including local memories and controllers for the
external memory. An accelerator can automatically identify
the memory location accessed by a memory request based on
the value of the address given at runtime (dynamic pointer
resolution). This allows the implementation of software code
without any semantic changes, enabling the possibility of dy-
namically migrating the execution of a task between software
and hardware.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 3

void preprocess (int v){
 struct results ret;
 if (v > 0)
 ret.x = 1;
 else
 ret.x = 4;
 ret.y = 10;
 ret.z = 5;
 return ret;
}

struct results
{
 int x;
 int y;
 int z;
};
...
get_IO(&v);
...
ret = preprocess(v);
...
compute(ret);

get_IO

compute

preprocess

ATTACK

zyx

v

(a)

get_IO

compute

preprocess

ATTACK

zyx

v

(b)

get_IO

compute

preprocess

DoS

zyx

v

(c)

get_IO

compute

preprocess

Attack
prevented

zyx

v

(d)

Fig. 2. Motivating example for implementing DIFT inside accelerators. Green links represent trusted data, red links represent malicious data, pink links
represent tainted data. (a) Original code with unprotected execution can potentially lead to a security violation; (b) Permissive execution. Accelerators that
are always considered trustable may invalidate taint tags and lead to security violations; (c) Untrusted execution. Services can be blocked when accelerators
are always considered untrusted and taint all data; (d) Execution with DIFT. Correct DIFT allows the system to behave correctly.

B. Attack Model

We consider a heterogeneous system (see Fig. 1(a)), com-
posed of a processor core (CPU) and one or more hardware
accelerators. The CPU executes software applications. Part of
the computation is offloaded to the accelerators. Assuming that
the design tool chain (i.e., the hardware and software com-
pilers) is trusted, the applications are vulnerable to software-
based attacks. Even though accelerators implement a fixed
functionality, an attacker can tamper with the system. Acceler-
ators receive the input parameters through their configuration
registers, perform the computation, and return the results in
the same way as software routines. The flow of information
as it transits through the accelerators is exposed to the same
security problems as software applications. Knowing a vulner-
ability in a privileged program, attackers generate malicious
inputs that allow them to exploit the vulnerability.

We consider systems with different protection mechanisms.
First, we consider legacy systems (i.e., without support for
non-executable memory). In this case, buffer overflow and
format string bugs can be exploited for code injection by
executing malicious code in the address space. We also
consider systems that support non-executable memory, where
the attacker can leverage existing code to compromise the
system (e.g., return-to-libc attacks). In these cases, attacks
exploit the flow of information (buffer overflow, format string
bugs, etc.) to take control of a vulnerable program, jump to
a target address, and execute a malicious routine [8], [7].
When implementing security protections for these systems,
one needs to guarantee that offloading the computation to an
accelerator does not compromise the security. In accelerators,
the malicious inputs that corrupt the program execution can be:
1) provided by the user and simply go through the accelerators;
2) generated by the accelerator based on specific set of inputs
given to the component; or 3) generated by unauthorized
interactions between the system and the accelerator (e.g.,
unexpected interrupt requests). First, one has to guarantee that
security protections for software applications can be executed
on heterogeneous systems without losing security information.
Second, one must prevent accelerators from tampering with the
data in the shared memory (i.e., DRAM). Such data could be
changed by compromised accelerator in such a way that the
software routine receiving it would become a suitable spot for

hijacking. Finally, one must verify the interactions between
the accelerators and the system.

C. Dynamic Information Flow Tracking

Fig 2(a) is a simple example in C code, composed of a
function preprocess, which returns three values through a
struct construct. The value of variable ret.x depends on
a user-input data, while the values of variables ret.y and
ret.z are not. An attacker may tamper with the input data
to force a malicious behavior in the function compute.

Dynamic Information Flow Tracking (DIFT) allows one to
determine whether there is a dependency between an untrusted
value and a variable that is used in a specific location of the
code (e.g., in the control condition of a jump instruction). If
so, the variable is tainted, i.e., it cannot be trusted. Specific
operations on tainted variables can be forbidden to avoid
exploits such as buffer overflow or unauthorized access to
memory locations. DIFT includes three steps:

• Tag Initialization: a tag is associated with each variable
to be tracked. In our example, tags are associated with
each field of the structure.

• Tag Propagation: based on the operations on the data,
the taint tags are propagated from input to output. Precise
tag propagation can be obtained by instrumenting the
code in software [20], by modifying the processor mi-
croarchitecture [15], or by offloading the tag propagation
to an external module [10].

• Tag Check: taint tags are regularly analyzed based on
the given security policy to determine unsafe uses.

However, if the component executing the given code has no
support for DIFT, the function is a black box from a DIFT
viewpoint and the user must rely on simplistic assumptions
to mark the data. One possibility is to consider all data prop-
agated by the function (e.g., output values or memory data)
as untainted regardless of its input values and the performed
computation. This is represented in Fig 2(b), where the return
values of the function preprocess are considered trusted.
We lose information on the taint tags and the analysis may
lead to a false negative, i.e., a computation that is considered
secured when it is not, leading to an attack exploitation. The
designer can take a conservative approach, marking all data
propagated by the function as untrusted, as in Fig 2(c). All

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 4

Hardware Module

local
memory

taint
memory

local
memory

taint
memory

data1

data2

taint1

taint2

Controller + Datapath

Hardware Module

local
memory

taint
memory

M
em

or
y

In
te

rf
ac

e

M
em

or
y

In
te

rf
ac

e

D
RA

M
 C

on
tr

ol
le

r

…

DRAM

Se
ria

liz
er

(a)

Datapath

reg_0 reg_1 reg_2

+

-

reg_3

reg_0 reg_1 reg_2

PM(+)

PM(-)

reg_3

mux mux

Controller
input_a input_b input_a input_b

return return

(b)

Fig. 3. (a) Microarchitecture of an accelerator with DIFT support. (b) Connections of shadow logic inside the datapath: grey elements support taint propagation,
while PM modules represent the taint propagation modules associated with the respective datapath functional units.

variables within the struct are marked as untrusted for the
function propagate. Over-tainting could cause false posi-
tives, avoiding correct execution of an application. Resources
that are otherwise available may be blocked due to excessive
tainting.

In both cases, simple assumptions do not capture the flow of
information inside the function, limiting the legitimate use of
the accelerator or opening the system to potential attacks. It is
important to perform precise DIFT, marking only the variables
that are untrusted and correctly propagating the taint tags
through the accelerator and without tainting other variables.
The use of taint propagation is shown in 2(d), where DIFT
is implemented in function preprocess and so only the
data related to ret.x is tainted for the function compute,
enabling the designer to identify the attack.

Precise DIFT is critical in accelerators. Without taint propa-
gation inside the accelerators, it is impossible to obtain correct
results in most cases. However, intrinsic support for DIFT
requires modifications to the accelerator microarchitecture
and, in some cases, a wholesale re-design. HLS tools can
help designers to automatically create accelerators with DIFT
support so as to correctly propagate the taint tags within the
accelerator and achieve the same taint propagation results as
obtained in software.

III. ACCELERATORS WITH DIFT SUPPORT

This section describes how we extend the baseline acceler-
ator microarchitecture to obtain a DIFT-enhanced accelerator
that can support DIFT with different taint granularity. One
can assign a taint tag to each variable, to each byte, or
to each bit of data. The corresponding microarchitecture is
accordingly generated. We describe the solutions to limit
the DIFT overheads. The different parts of an accelerator
(Section II) are modified as follows:

• the controller requires only a few modifications, corre-
sponding to the implementation of taint checks according
to the security policy (see Section III-A);

• the datapath includes additional logic to generate the
taint tags associated with temporary values, and to com-
pute and propagate their values according to and concur-
rent with the accelerator execution (see Section III-B);

• the memory elements are extended to store taint tags and
to support an efficient exchange of the taint tags associ-
ated with the data stored in DRAM (see Section III-C).

TAINTHLS generates a DIFT-enhanced accelerator once the
baseline accelerator microarchitecture is available.

A. Controller

The controller specifies the operations to be executed in
each clock cycle and generates the control signals to drive
the multiplexers, to enable writing into registers and to exe-
cute memory operations using the memory interface. When
implementing DIFT, the controller is also responsible for
detecting and managing security exceptions, sending proper
signals to the rest of the system [7]. This is implemented with
an additional output pin, connected to a dedicated interrupt
line. When a security violation occurs, the accelerator is
halted, a security interrupt is raised, and the corresponding
security exception routine is executed by the processor. The
designer can configure security policies to specify what is
allowed (or disallowed) when executing on tainted data. While
the detection of security violations is distributed across the
different FSM transitions, such exceptions are managed by
a central security manager. We consider two cases: FSM
transitions based on potentially-tainted values coming from the
datapath and memory operations that use potentially-tainted
addresses affecting the DRAM data.

First, based on the outcome of the datapath operations, (e.g.,
the result of arithmetic comparisons or the flags set by arith-
metic operations), the FSM can perform unsafe transitions.
Inputs to the datapath may be malicious external data and
so are the results of the operations. The tainted data may
change the result of a condition and a branch taken. The data
and the associated taint tag are sent to the controller, while
the detection of violations is implemented according to the
security policy. For instance, according to a security policy, a
security violation is raised for all tainted transitions or only
for critical ones determined by the designer.

Second, the accelerator may access external memory using
a tainted address. The attacker may have tampered with the
address to read from or write to an unauthorized memory
location. Even though systems are protected against memory

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 5

Datapath

reg_0

Controller

reg_0

resources shadow logic

WE

(a)

Datapath

+

-

PM(+)

PM(-)

(b)

Datapath

- PM(-)

mux mux

Controller
muxmux

(c)

Fig. 4. Microarchitectural solutions to ensure data flow consistency. (a) Enabling concurrent operations on both data and tag registers. (b) Direct connections
between datapath operators (i.e., chaining). (c) Connections of shadow logic with a multiplexer tree.

accesses outside of the memory space allocated to the ac-
celerator, it is not guaranteed that the accelerator is always
used in a safe way. The accelerator may access sensitive
data within the memory space of the accelerator and leak
private information. The accelerator should be configured to
raise exceptions when addresses are tainted on a case-by-
case basis. The accelerator can be configured either to prevent
operations when any part of the address used for the operation
is tainted (enforcing strict memory protection) or only when
specific bits are altered. For example, the controller can be
configured to notify a security violation only when the most
significant bits are tainted, specifying that the accelerator
is stopped only when the memory location is significantly
changed (permissive memory protection). This configuration is
based on the application developer input on the pointers and
its knowledge of the application code. One can mark specific
pointers as critical or some memory operations as benign even
when one of the elements is tainted.

B. Datapath

As shown in Fig. 3(a), the microarchitecture is supple-
mented with a shadow microarchitecture [15]. The shadow
microarchitecture implements DIFT and includes:

• taint registers to store the taint tags associated with
the data values propagated by the functional units in the
baseline microarchitecture;

• propagation modules to combine the taint tags and the
data to compute the taint tags associated with the output
of any operations.

We discuss these extensions of the shadow microarchitecture
and their interconnection.

Taint Registers. We associate one taint tag for each variable
that goes through the accelerator, including temporary values
generated during the computation. These variables are stored
in datapath registers and the corresponding tags represent the
level of security/trust associated with the data. Data variables
and taint tags have identical lifetimes during the accelerator
execution. Hence, register allocation on the taint tags yields
the same results as that for the corresponding data variables.
Hence, we create a taint register for each register of the
datapath. Then, when two variables share the same datapath
register, we assign the corresponding taint tags to share the
same tag register. When one variable is written into a register,
the associated taint tag is written into the corresponding taint
register. We use the same write-enable signal to control these

two registers, as shown in Fig. 4(a) so that the values and the
taint tags are written at the same time.

The size of each taint register depends on the selected
granularity. We support three levels of granularity: bit, byte
and variable. In bit-level taint propagation, a taint register has
as many bits as the corresponding variable [15]. For byte-
level taint propagation, we have a taint bit for every byte of
the variable [10]. For variable-level taint propagation, we have
one taint bit per variable [6].

Taint Propagation Modules and Logic Interconnection. We
add extra ports to the interface of each hardware component to
propagate the taint tags associated with the input parameters
and the return value with the code executing on the CPU. Taint
propagation modules determine a taint tag associated with the
output of a functional unit, i.e., how much the input values
are tainting the output. For example, when adding two values,
the associated propagation modules determines the taint tag
corresponding to the result of the addition. To this end, we
add a taint propagation module for each functional unit.

Given an operation to be performed, the corresponding
taint propagation module combines the input values and the
associated taint tags (see Fig. 3(b)) to determine the taint
tag associated with its result. We associate a different taint
propagation rule with each operation type. Each propagation
module depends on: 1) the operation to perform; and 2)
the granularity of the taint propagation. For example, in
bit-level taint propagation, every change at the input of a
module must be precisely tracked at the output [15]. Precise
analysis requires more logic than taint propagation performed
on variable-level tags, where simple Boolean operations (e.g.,
OR gates) suffice to propagate the taint values.

We create the shadow microarchitecture so that it has the
same topology as the baseline microarchitecture, as shown in
Figs. 4(b) and 4(c). For example, when two functional units
are directly connected by chaining them, the two propaga-
tion modules are also chained in the same way (Fig. 4(b)).
Similarly, when a multiplexer tree is used to connect some
registers to a functional unit, the respective taint registers are
connected with a similar multiplexer tree controlled by the
same select signals (Fig. 4(c)). In this way, TAINTHLS ensures
data flow consistency between the baseline and the shadow
microarchitectures, allowing the concurrent propagation of the
data values and the associated taint tags.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 6

local
memory

taint
memory

address
data
tags

memory
interface

Fig. 5. Operations on taint memories are performed in parallel to the ones
on the data by the additional bus carrying the taint tags.

C. Memory Elements

Hardware accelerators store part of the data locally in
heterogeneous and distributed memories (scratchpad memo-
ries [21], [22] or private local memories [18]), while the
rest of the data is stored in DRAM and accessed via a
memory interface [12], [22], [18]. Since local memories can be
connected in a daisy chain for dynamic address resolution [12],
tampering with the memory address may result in memory
accesses to unauthorized memory locations. So, one must keep
track of memory operations with taint tags associated with
both the addresses and the data values. TAINTHLS extends
the daisy-chain memory architecture as follows:

• Addresses are handled like other variables stored in
registers. So, the corresponding taint tag is generated and
propagated when needed.

• Each local memory is supplemented with an additional
taint memory to hold the taint tags. An additional taint
bus carries the taint tags associated with the data values so
that the memory accesses to the data and the tags can be
performed using the same memory address. This is shown
in Fig. 5, where operations on the internal memories are
performed with the same latency assumed for execution
without DIFT.

• Accesses to the external memory may be constrained by
the architecture. When it is not possible to introduce a
dedicated taint bus to the external interface, TAINTHLS
serializes the memory accesses to data and associated
tags.

This shadow memory architecture has no impact on the
scheduling of the memory operations. Operations on the
external memory require a latency-insensitive protocol so that
the computation is resumed when the transfers are complete.
As a result, the shadow logic is created with no information
about the external architecture and modifications are required
only to the top module to serialize the external accesses. This
is shown in Fig. 3(b) as the Serializer component. The layout
of the memory tags, especially in DRAM, is important to
understand how to translate the memory addresses provided
to the memory controller. For example, when the data and
tags are interleaved, the memory address is shifted by one bit
and the less significant bit is used to address the data or the
tags. Memory readdressing is performed by simple logic that
is connected to the input ports of the memory elements1.

1It is also possible to use a dedicated memory space for the tags, eventually
with specific optimizations to reduce the memory footprint.

Taint
Library

C-based
specification

DIFT Support

DIFT
Configuration

Architecture
Information

Accelerator
(Verilog)

Generate
Taint Registers

Generate
Propagation Modules

Interconnect
Shadow Logic

Technology
Library

Constraints
HLS

Scheduling

Resource Binding

Controller Synthesis

Testbench
(Verilog)

Fig. 6. Overview of TAINTHLS methodology.

IV. DESIGN METHODOLOGY

This section presents the TAINTHLS methodology to auto-
matically generate hardware accelerators with intrinsic DIFT
support outlined in Section III. As shown in Fig. 6, TAINTHLS
uses high-level synthesis (HLS) and receives as input a C
specification, along with synthesis constraints (e.g., the clock
period) and the target technology (e.g., the description and
the timing of the functional units). This information is used to
generate the controller, the datapath, the local memories and
the memory interface [5]. To generate the shadow microar-
chitecture, one must provide a Taint Library, containing the
description of the taint propagation modules associated with
each functional unit (e.g., adder, multiplier, or shifter) In this
way, one can evaluate different taint propagation rules and
alternative shadow microarchitectures with no changes to the
datapath functionality. One can also evaluate the effects on the
resources and the critical path. Possible optimizations (e.g.,
merging functionally equivalent nodes) will be performed
during logic synthesis. As output, TAINTHLS produces a
Verilog RTL description of the DIFT-enhanced accelerator,
along with a testbench for simulation.

Besides the traditional HLS steps (e.g., scheduling, resource
binding, and controller synthesis), TAINTHLS includes three
additional steps to synthesize DIFT support: generation of the
taint values, generation of the taint propagation modules, and
interconnection of the shadow microarchitecture components.

A. High-Level Synthesis

A traditional HLS flow interfaces with compilers (e.g., GCC
or LLVM) to parse the input C code, apply compiler optimiza-
tions, and extract the intermediate representation [5]. Most
modern HLS tools exploit the Single Static Assignment (SSA)
form, which is composed of simple instructions that can be
easily manipulated and translated into hardware [23]. The SSA
form generates a unique identifier for each assignment to the
same variable, increasing the number of temporary values but
simplifying the subsequent HLS steps. After the assignment
of resources and memories (called allocation), scheduling is
performed to determine the operations to be executed in each
clock cycle. Operations scheduled in different clock cycles
can potentially reuse the same resources. Temporary values
crossing the clock boundary are assigned to registers to be

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 7

stored. Different algorithms can be used to solve the module
binding and register binding problems. For example, liveness
analysis followed by register coloring guarantees the minimum
number of registers with no conflicts [24]. The penultimate
step in the accelerator creation is the interconnection bind-
ing, where the different resources (e.g., functional units and
registers) are interconnected with multiplexers. Finally, the
controller is generated (controller synthesis), where the control
flow of the accelerator is implemented with an FSM. The FSM
generates, for each clock cycle, the proper signals that control
the datapath resources and drive the data values based on the
operations to be executed and the datapath microarchitecture.
The synthesis of each accelerator is performed hierarchically,
starting from the innermost C functions. In this way, when
generating a module, all submodules have been already gen-
erated and they can be interconnected as any other datapath
resource.

B. Generation of Taint Values
In the first step, we generate all components that are

necessary to store the taint tags (either taint registers or taint
memories). As discussed in Section III, we associate a taint
register with each datapath register, whose bitwidth depends
on the chosen granularity. This information is specified in
the DIFT Configuration file. We then generate an additional
tag for each input parameter (to be specified with additional
memory-mapped write operations on the input interface) and
one for the return value, if any (to be specified with one
additional memory-mapped read operation). These operations
are performed only once when the accelerator is configured
(for the input parameters) or during the interrupt routine (for
the return value). The performance overhead is thus negligible
compared to the execution time of the accelerator. In addition,
such registers are initialized to 1 after resetting the circuit in
order to identify the values as tainted by default. In this way,
any misuse of the accelerator will assume that the provided
data cannot be trusted.

Next, we generate the taint memories that will be used to
store the taint tags associated with the data stored in the local
SPMs. Given a data structure, which has N words of M bits,
we use a dual-port embedded memory to store the data [12],
[18]. If the HLS scheduling guarantees that there is only one
memory operation per clock cycle and the size of the data
structure plus the size of the corresponding taint tags can fit
into the same embedded memory, we can use the second port
to perform the taint-related operation in parallel. Additional
logic is generated to convert the memory address on the second
port to properly address the taint area. In this way, we can store
the data and the corresponding tags in the same embedded
memory, reducing the memory occupation. Otherwise, we
must instantiate an additional embedded memory for storing
the taint tags, where the same address is used to address both
memories (see Fig. 5)

C. Generation of Propagation Modules
Based on the results of module binding, we add the modules

to propagate the taint tags. First, we select the proper prop-
agation modules based on the functional units, the selected

granularity, and the input Taint Library. In our Taint Library,
we support modules designed with any existing techniques,
like gate-level information flow tracking [15] and precise
approaches [25]. We assume that the modules are available
in the library since the definition of the propagation rules and
the optimization of the corresponding propagation modules
is out of the scope of this work. Our approach can be used
to evaluate the trade-off between complexity and precision
of such modules [26]. Different from gate-level tracking that
creates shadow microarchitecture for all hardware resources,
we exploit additional HLS information to reduce the resource
overhead. For example, the accelerator is considered in a
correct state if it has passed all security checks imposed
on the FSM transitions (see Section III-A). In this case, the
operations executed in the clock cycle are legitimate and the
corresponding control signals are generated to propagate the
data values and the taint tags through the datapath resources
and the propagation modules, respectively. So, the intercon-
nection multiplexers do not require to be implemented with
DIFT support. So, for each functional unit, we determine the
available propagation modules in the taint library (e.g., the
ones associated with the same operation) and we select the
instance corresponding to the level of granularity selected
for the accelerator. Given the finite set of operations that
may be generated by the HLS frontend, the definition of the
corresponding complete Taint Library guarantees that any C
function is correctly synthesized with TAINTHLS.

When the complexity of these modules is simpler than the
corresponding datapath operators (e.g., in case of variable- and
byte-level tracking), the critical path is not affected. In all other
cases, the HLS engine can be configured to have a larger slack
in each clock cycle after the scheduling to reduce operation
chaining [5]. Operation chaining may increase the latency of
the circuit, but it guarantees to generate enough margin for the
shadow logic. As a result, the shadow microarchitecture can be
safely created after all steps for generating the datapath have
been completed. This makes the TAINTHLS methodology
modular and easy to implement.

D. Interconnections in the Shadow Microarchitecture

Finally, we interconnect all these components, along with
the memory interfaces, to create the shadow microarchitecture.
In particular, the propagation modules are connected not only
to the taint registers, but also to the functional units and
registers providing the actual values of the computation to
generate the final description of each hardware module. For
system-level integration, we provide the characteristics of the
target architecture to determine how to interface the generated
accelerator with the system (e.g., if the accelerator is tightly or
loosely coupled with the processor). In the architectural con-
figuration, we specify if we can instantiate the additional taint
bus to carry the taint tags to the DRAM. If not, we introduce
the Serializer (see Fig. 3(b)) between the memory interface and
the bus connection. We provide information on the memory
layout to determine where to read/write the memory tags.
Such information is provided to the methodology and used
to configure and customize the proper components (memory

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 8

TABLE I
CHARACTERISTICS OF THE BENCHMARKS USED TO EVALUATE

TAINTHLS. LOC IS THE LINES OF C CODE.

BENCHMARK LOC FUNCTIONS ARRAYS
EXTERNAL
MEMORY

ICRC 76 1 1 3

AES 326 7 3 3

BFS 221 1 5 3

Viterbi 146 1 5 3

interfaces and Serializer) as described in Section III-C. Finally,
additional registers are added in the top-level interface to store
the taint tags for input/output ports.

V. EXPERIMENTAL EVALUATION

This sections evaluates the DIFT-enhanced accelerators gen-
erated by TAINTHLS.

A. Experimental Setup

We extended BAMBU ver. 0.9.4 [27], a modular and open-
source framework for research in high-level synthesis [5],
[11]. BAMBU receives as input C-based specifications to be
synthesized for FPGA targets, leveraging the GCC compiler to
perform many compiler-related optimizations (e.g., loop trans-
formations or alias analysis). We implemented the TAINTHLS
methodology presented in Section IV as an additional pass on
the top of the HLS results generated by BAMBU. To evaluate
the overhead introduced by DIFT support, we targeted a Xilinx
Virtex-7 FPGA (xc7vx485t) at the frequency of 100 MHz
and local memories implemented with BRAMs. We performed
logic synthesis using Xilinx Vivado 2016.3 and RTL simula-
tion with Mentor ModelSim SE 10.3 for area and performance
results. We evaluated the hardware resources necessary to
implement the shadow microarchitecture (Section V-B) and the
overhead in terms of clock cycles to perform the tag operations
(Section V-C). We validated the DIFT-enhanced accelerators
against full-software execution (Section V-D).

We applied TAINTHLS to generate accelerators for four
benchmarks:

• Invariant Cyclic Redundancy Check (ICRC) is a popular
error detection code [28];

• Advanced Encryption Standard (AES) is an iterated block
cipher (encryption algorithm) [29];

• Breadth-First Search (BFS) is a queue-based algorithm
for graph traversal [29];

• Viterbi is a dynamic programming method to compute
the most likely hidden Markov chain [29].

These kernels are likely implemented as accelerators and used
in different applications. The kernels are in C code and their
characteristics are reported in Table I. In this table, we include
the size of the code, the number of functions, the number of
local memories, and the presence of memory interface. Table II
reports the the characteristics of the baseline accelerators
obtained using BAMBU without DIFT.

TABLE II
IMPLEMENTATION CHARACTERISTICS OF THE Baseline ACCELERATORS

(XILINX VIRTEX-7 FPGA VX485, 100 MHZ). LUT: LOOK-UP TABLES;
FF: FLIP-FLOPS; DSP: DIGITAL SIGNAL PROCESSOR CORES; BRAM:

BLOCK RANDOM ACCESS MEMORIES.

BENCHMARK LUT FF DSP BRAM CLOCK
CYCLES

ICRC 3,459 323 0 2 1,957
AES 10,641 4,571 0 2 2,266
BFS 650 570 0 2 23,265
Viterbi 1,087 974 2 0 1,594,464

Baseline (no DIFT)
Variable-level DIFT

Word-level DIFT
Bit-level DIFT +31%

LU
T

O
ve

rh
ea

d
(N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ICRC AES BFS Viterbi

Fig. 7. Look-up table overhead in terms of LUT for DIFT support in
accelerators.

B. Resource Overhead

We evaluate the overhead of the propagation modules, which
have been implemented as precise modules [25], described in
Verilog, and provided as input to BAMBU in the Taint Library.
We compare the resources for implementing the accelerators
without and with DIFT support at different levels of gran-
ularity. Fig. 7 shows the overhead in terms of LUTs when
introducing taint propagation in accelerators. As expected,
the number of LUTs increases with the granularity of the
taint propagation. We need complex rules to achieve the same
results obtained when the DIFT is performed in software (see
Section V-D). BFS benchmark has the minimal overhead (up
to 15%) since its logic is simple and we need simple modules
for the operations of this application. On the contrary, Viterbi
benchmark requires up to 31% of additional logic. However,
this overhead is small compared to gate-level tracking [15].
The low overhead is because multiplexers do not require
additional select logic and the memory interfaces are mini-
mally affected as they only forward one additional memory
operation. Additional flip-flops are used to store the taint tags
and their number is proportional to the number of variables
and depends on the chosen granularity. In the worst case,
for bit-level taint propagation, we simply double the number
of flip-flops used by the accelerator. Similarly, BRAMs are
doubled in all cases since we do not use any compression on
the taint tags. So, TAINTHLS doubles the memory footprint
of the accelerator. Similar overhead is obtained for the taint
tags stored in the external memory. On one hand, the memory
footprint of the entire application doubles. On the other, this
simplifies the memory interfaces. DSPs are never affected by

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 9

DIFT support since the propagation rules are simple and do
not require such components.

When increasing the granularity to the bit-level, propagation
modules become complex. For complex arithmetic operations
(e.g., multiplication and integer division), the delay starts
becoming significant (∼30% longer than the critical path of the
corresponding functional units). However, none of the shadow
microarchitectures violated the clock period of 10 ns, allowing
the accelerators to effectively run at 100 MHz.

Even though BAMBU does not fully support ASIC technolo-
gies, we performed tests on micro-benchmarks to evaluate the
impact for these targets. These micro-benchmarks are simple
functions with no memory accesses. We created the baseline
and DIFT-enhanced versions of these micro-benchmarks, tar-
geting ASIC (Synopsys 32 nm SAED library at 500 MHz)
and FPGA (Xilinx Virtex-7 xc7vx485t) and compared the
overheads of the taint logic. In ASIC implementations, the
shadow microarchitecture introduces an area overhead that is
slightly larger (∼6%) than the one introduced when targeting
FPGAs. FPGA synthesis tools jointly optimize the DIFT logic
and the functional units better, using a lower number of LUTs.

C. Performance Overhead

The Serializer in Fig. 3(b) is the only element that can
introduce performance overhead. All other taint operations are
performed in parallel to the corresponding baseline microar-
chitecture counterparts. We simulated the accelerators with
and without the Serializer, exploring the cases with a single
shared data bus or with an extra taint bus to the external
memory. ICRC benchmark requires 1,957 clock cycles for the
baseline case and when taint propagation uses a dedicated bus.
In this architecture all memory operations on data and tags
are performed in parallel. When the Serializer is introduced,
every memory operation doubles its latency and the ICRC
now takes 2,039 cycles (+4.20%). Since we do not optimize
when exchanging the taint tags with the external memory, there
is no difference when using different taint granularity. Other
benchmarks have a lower overhead (less than 1%). So, one
can achieve the same performance results even without the
dedicated bus.

D. Validation of DIFT Results

To verify the correctness of the DIFT logic generated by
TAINTHLS, we compared the results of the taint propagation
against those for the corresponding software obtained by
instrumenting the initial C code using a taint propagation
library [20]. We generated 100 combinations of data and
taint values as input and compared the taint tags after the
execution of the accelerator (i.e., the returned tag and taint tags
in the external memory) with the ones obtained in software.
We carried out these experiments for all levels of granularity
and, in all cases, the results matched (i.e., the same values
for the tags and the same number of false positive/negative
executions). Propagation rules were designed to achieve the
same results. This demonstrates that TAINTHLS generates
DIFT-enhanced accelerators with the same level of security
as the corresponding DIFT-enhanced software.

VI. RELATED WORK

Information flow tracking has been studied for processors
to identify malicious uses. It can be performed statically (by
analyzing the code) or dynamically (by tracking the data
during the execution). Static methods allow for a thorough
analysis of the application, but the set of problems that can be
identified is limited [30]. Dynamic tracking allows detection
and prevention, but may incur large overheads [7]. DIFT
solutions can be implemented by modifying the software [6],
[20] or the underlying hardware [10], [15]. libdft is a
software library that can be used with unmodified binaries
to perform information tracking [20]. TaintDroid is a
modified virtualization environment to perform information
flow tracking in Android-based applications [6]. A dedicated
DIFT coprocessor that operates on 4-bit tags on the execution
trace of the processor is presented in [10]. This solution is
general and partially executes in parallel to the processor,
but it is not efficient for fixed-function components. Gate-
level information flow tracking (GLIFT) has been reported
in [15]. Processors built on the top of these GLIFT-enabled
gates can track information. However, this solution does not
apply to already-fabricated processors. GLIFT methods have
been extended to trade off precision and cost. However, the
overhead of GLIFT may be large since no information on the
specialized microarchitecture is included in the DIFT logic
generation [25], [26].

None of these solutions support tracking information in
heterogeneous architectures. WHISK discusses the require-
ments for information flow tracking in heterogeneous architec-
tures [14]. WHISK is complementary to this paper; it focuses
on how the taint tags should be exchanged in the system but
does not discuss generation of the shadow logic and taint
propagation inside the accelerators. Raksha implements DIFT
in the processor pipeline but does not support tightly-coupled
accelerators [8]. DIFT support at the RTL level was proposed
in [25], but it has not been fully integrated into a high-level
design methodology for complex accelerators with memory
accesses. However, heterogeneous architectures are popular in
high-performance, energy-efficient systems [1]. They feature
a large number of accelerators that are tightly [21], [31] or
loosely [3], [22] coupled with the processors. TAINTHLS can
generate DIFT for both types of accelerators.

HLS is used to generate accelerators [5]. On one hand,
security aspects like information flow tracking have not
been considered during accelerator generation. On the other
hand, HLS reduces the effort required in designing security-
enhanced accelerators [32].

VII. CONCLUDING REMARKS

TAINTHLS is a methodology based on high-level syn-
thesis to automate the design of accelerators with intrinsic
support for dynamic information flow tracking. TAINTHLS
adopts a modular microarchitecture shadowing the baseline
microarchitecture to ensure consistency of the data-flow of
the accelerator data and the taint tags. One can configure the
tags with distinct rules for propagation through each module.
We test the approach using a state-of-the-art HLS tool to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 10

confirm that it produces the same results as software-based
DIFT. While variable-level taint propagation yields a low
resource overhead (less than 10%), bit-level taint propagation
requires up to 30% of additional logic to implement more
complex propagation rules. Researchers can use the framework
to secure heterogeneous SoCs in terms of tag propagation
rules, memory architectures, and system-level integration. HLS
for security is an important research field and TAINTHLS
should be complemented with other HLS-based methods for
trustworthy system design.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proceed-
ings of the Annual International Symposium on Computer Architecture
(ISCA), Jun. 2011, pp. 365–376.

[2] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Architecture support for accelerator-rich CMPs,” in Proceedings of the
Design Automation Conference (DAC), Jun. 2012, pp. 843–849.

[3] E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, “An
analysis of accelerator coupling in heterogeneous architectures,” in
Proceedings of the Design Automation Conference (DAC), Jun. 2015,
pp. 202:1–202:6.

[4] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks, “The Accelerator
Store: A shared memory framework for accelerator-based systems,”
ACM Transactions on Architecture and Code Optimization, vol. 8, no. 4,
pp. 48:1–48:22, Jan. 2012.

[5] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey
and evaluation of FPGA High-Level Synthesis tools,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 10, pp. 1591–1604, Oct. 2016.

[6] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” in Proceedings of the
Conference on Operating Systems Design and Implementation (OSDI),
Oct. 2010, pp. 393–407.

[7] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in Proceedings of
the international conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Oct. 2004, pp. 85–96.

[8] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible infor-
mation flow architecture for software security,” in Proceedings of the
Annual International Symposium on Computer Architecture (ISCA), Jun.
2007, pp. 482–493.

[9] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Communications of the ACM, vol. 20, no. 7, pp. 504–
513, Jul. 1977.

[10] H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling dynamic in-
formation flow tracking with a dedicated coprocessor,” in Proceedings
of the International Conference on Dependable Systems & Networks
(DSN), Jun. 2009, pp. 105–114.

[11] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the
high level synthesis of memory-intensive applications,” in Proceedings
of the International Conference on Field Programmable Logic and
Applications (FPL), Sep. 2013, pp. 1–4.

[12] C. Pilato, F. Ferrandi, and D. Sciuto, “A design methodology to
implement memory accesses in high-level synthesis,” in Proceedings
of the International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), Oct. 2011, pp. 49–58.

[13] M. Minutoli, V. G. Castellana, A. Tumeo, M. Lattuada, and F. Ferrandi,
“Enabling the high level synthesis of data analytics accelerators,” in
Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Oct. 2016, pp. 1–15.

[14] J. Porquet and S. Sethumadhavan, “WHISK: An uncore architecture for
dynamic information flow tracking in heterogeneous embedded SoCs,”
in Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Sep. 2013, pp. 1–9.

[15] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and
R. Kastner, “Theoretical fundamentals of gate level information flow
tracking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 8, pp. 1128–1140, Aug. 2011.

[16] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in ISSCC Digest of Technical Papers, Feb. 2014, pp. 10–14.

[17] J. Zhu and D. D. Gajski, “A unified formal model of ISA and FSMD,”
in Proceedings of the International Workshop on Hardware/Software
Codesign (CODES), Mar. 1999, pp. 121–125.

[18] C. Pilato, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “System-
level optimization of accelerator local memory for heterogeneous
Systems-on-Chip,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 3, pp. 435–448, Mar. 2017.

[19] Y. Wang, P. Li, and J. Cong, “Theory and algorithm for generalized
memory partitioning in high-level synthesis,” in Proceedings of the
International Symposium on Field-Programmable Gate Arrays (FPGA),
Feb. 2014, pp. 199–208.

[20] V. P. Kemerlis et al., “Libdft: Practical dynamic data flow tracking
for commodity systems,” in Proceedings of the Conference on Virtual
Execution Environments (VEE), Mar. 2012, pp. 121–132.

[21] F. Conti, A. Marongiu, and L. Benini, “Synthesis-friendly techniques for
tightly-coupled integration of hardware accelerators into shared-memory
multi-core clusters,” in Proceedings of the International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
Sep. 2013, pp. 1–10.

[22] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Rein-
man, “Accelerator-rich architectures: Opportunities and progresses,” in
Proceedings of the Design Automation Conference (DAC), Jun. 2014,
pp. 1–6.

[23] D. Novillo, “Design and implementation of Tree SSA,” in GCC Devel-
opers’ Summit, 2004, pp. 119–130.

[24] L. Stok, “Data path synthesis,” Integration, the VLSI Journal, vol. 18,
no. 1, pp. 1–71, Dec. 1994.

[25] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,”
in Proceedings of the Design, Automation & Test in Europe Conference
(DATE), Mar. 2017, pp. 1691–1696.

[26] A. Becker, W. Hu, Y. Tai, P. Brisk, R. Kastner, and P. Ienne, “Arbitrary
precision and complexity tradeoffs for gate-level information flow track-
ing,” in Proceedings of the Design Automation Conference (DAC), Jun.
2017, pp. 1–6.

[27] Politecnico di Milano, “Bambu 0.9.4,” Available at http://panda.dei.
polimi.it, 2016.

[28] J. Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the low-
power MCORE architecture,” in Proceedings of the Power Driven
Microarchitecture Workshop, Jul. 1998, pp. 145–150.

[29] B. Reagen, R. Adolf, Y. S. Shao, G. Y. Wei, and D. Brooks, “MachSuite:
Benchmarks for accelerator design and customized architectures,” in
Proceedings on the International Symposium on Workload Characteri-
zation (IISWC), Oct. 2014, pp. 110–119.

[30] Y. Liu and A. Milanova, “Static information flow analysis with handling
of implicit flows and a study on effects of implicit flows vs explicit
flows,” in Proceedings of the European Conference on Software Main-
tenance and Reengineering (CSMR), Mar. 2010, pp. 146–155.

[31] N. Goulding-Hotta, J. Sampson, Q. Zheng, V. Bhatt, J. Auricchio,
S. Swanson, and M. B. Taylor, “GreenDroid: An architecture for the
Dark Silicon Age,” in Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC), Jan. 2012, pp. 100–105.

[32] C. Pilato, S. Garg, K. Wu, R. Karri, and F. Regazzoni, “Securing
hardware accelerators: a new challenge for High-Level Synthesis,” IEEE
Embedded Systems Letters, pp. 1–4, First online: Nov. 2017.

http://panda.dei.polimi.it
http://panda.dei.polimi.it

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2016 11

Christian Pilato received the Laurea degree in
Computer Engineering and the Ph.D. degree in Infor-
mation Technology from the Politecnico di Milano,
Italy, in 2007 and 2011, respectively. From 2013 to
2016, he was a Post-doc Research Scientist with
the Department of Computer Science, Columbia
University, New York, NY, USA. He is currently a
Post-doc at the University of Lugano, Switzerland.
His research interests include high-level synthesis,
reconfigurable systems and system-on-chip architec-
tures, with emphasis on memory aspects. In 2014 Dr.

Pilato served as program chair of the Embedded and Ubiquitous Conference
(EUC) and he is currently involved in the program committees of many
conferences on embedded systems, CAD, and reconfigurable architectures
(e.g., FPL, DATE, CASES). He is a member of the Association for Computing
Machinery.

Kaijie Wu received the BE degree from Xidian
University, Xi’an, China, in 1996, the MS degree
from the University of Science and Technology of
China, Hefei, China, in 1999, and the Ph.D. degree
in electrical engineering from Polytechnic University
(Now Polytechnic Institute of New York University),
Brooklyn , New York, in 2004. He then joined
University of Illinois, Chicago, USA as an Assistant
Professor. From 2014 to 2016, he was a professor
at the College of Computer Science, Chongqing
University, China. His research is on the big area

of trustworthy computing with special interest on dependable computing
and hardware security. He is the recipient of the 2004 EDAA Outstanding
Dissertation Award for “new directions in circuit and system test.”, and the
“Most Significant Paper” award from the International Test Conference, 2014.
He is a member of the IEEE.

Siddharth Garg received his Ph.D. degree in Elec-
trical and Computer Engineering from Carnegie
Mellon University in 2009, and a B.Tech. degree in
Electrical Engineering from the Indian Institute of
Technology Madras. He joined NYU in Fall 2014
as an Assistant Professor, and prior to that, was an
Assistant Professor at the University of Waterloo
from 2010-2014. His general research interests are
in computer engineering, and more particularly in
secure, reliable and energy-efficient computing. In
2016, Siddharth was listed in Popular Science Mag-

azine’s annual list of ”Brilliant 10” researchers. Siddharth has received the
NSF CAREER Award (2015), and paper awards at the IEEE Symposium
on Security and Privacy (S&P) 2016, USENIX Security Symposium 2013,
at the Semiconductor Research Consortium TECHCON in 2010, and the
International Symposium on Quality in Electronic Design (ISQED) in 2009.
Siddharth also received the Angel G. Jordan Award from ECE department of
Carnegie Mellon University for outstanding thesis contributions and service
to the community. He serves on the technical program committee of several
top conferences in the area of computer engineering and computer hardware,
and has served as a reviewer for several IEEE and ACM journals.

Ramesh Karri is a Professor of ECE at New
York University. He co-directs the NYU Center for
Cyber Security (http://cyber.nyu.edu). He also leads
the Cyber Security thrust of the NY State Center
for Advanced Telecommunications Technologies at
NYU. He co-founded the Trust-Hub (http://trust-
hub.org) and organizes the Embedded Systems Chal-
lenge (https://csaw.engineering.nyu.edu/esc), the an-
nual red team blue team event. Ramesh Karri has a
Ph.D. in Computer Science and Engineering, from
the UC San Diego and a B.E in ECE from Andhra

University. His research and education activities in hardware cybersecurity
include trustworthy ICs; processors and cyber-physical systems; security-
aware computer-aided design, test, verification, validation, and reliability;
nano meets security; hardware security competitions, benchmarks and metrics;
biochip security; additive manufacturing security. He has published over 240
articles in leading journals and conference proceedings. Karri’s work on
hardware cybersecurity received best paper nominations (ICCD 2015 and
DFTS 2015) and awards (ACM TODAES 2018, ITC 2014, CCS 2013, DFTS
2013 and VLSI Design 2012). He received the Humboldt Fellowship and
the National Science Foundation CAREER Award. He serves on the editorial
boards of several IEEE and ACM Transactions (TIFS, TCAD, TODAES, ESL,
D&T, JETC). He served as an IEEE Computer Society Distinguished Visitor
(2013-2015). He served on the Executive Committee of the IEEE/ACM Design
Automation Conference leading the SecurityDAC initiative (2014-2017). He
delivers invited keynotes, talks, and tutorials on Hardware Security and Trust
Trust (ESRF, DAC, DATE, VTS, ITC, ICCD, NATW, LATW, CROSSING,
etc.). He co-founded the IEEE/ACM NANOARCH Symposium and served
as program/general chair of conferences (IEEE ICCD, IEEE HOST, IEEE
DFTS, NANOARCH, RFIDSEC and WISEC). He serves on several program
committees (DAC, ICCAD, HOST, ITC, VTS, ETS, ICCD, DTIS, WIFS).

Francesco Regazzoni is a senior researcher at the
ALaRI Institute of University of Lugano (Lugano,
Switzerland). He received his Master of Science
degree from Politecnico di Milano and his PhD de-
gree at the ALaRI Institute of University of Lugano.
He has been assistant researcher at the Université
Catholique de Louvain and at Technical University
of Delft, and visiting researcher at several institu-
tions, including NEC Labs America, Ruhr University
of Bochum, EPFL, and NTU. His research interests
are mainly focused on cyber-physical and embedded

systems security, covering in particular side channel attacks, cryptographic
hardware, and electronic design automation for security.

	Introduction
	Contributions

	Background
	Target Architecture Model
	Attack Model
	Dynamic Information Flow Tracking

	Accelerators with DIFT Support
	Controller
	Datapath
	Memory Elements

	Design Methodology
	High-Level Synthesis
	Generation of Taint Values
	Generation of Propagation Modules
	Interconnections in the Shadow Microarchitecture

	Experimental Evaluation
	Experimental Setup
	Resource Overhead
	Performance Overhead
	Validation of DIFT Results

	Related Work
	Concluding Remarks
	References
	Biographies
	Christian Pilato
	Kaijie Wu
	Siddharth Garg
	Ramesh Karri
	Francesco Regazzoni

