755 research outputs found
Coordination networks incorporating halogen-bond donor sites and azobenzene groups
Two Zn coordination networks, [Zn(1)(Py)2]2(2-propanol)n (3) and [Zn(1)2(Bipy)2](DMF)2n (4), incorporating halogen-bond (XB) donor sites and azobenzene groups have been synthesized and fully characterized. Obtaining 3 and 4 confirms that it is possible to use a ligand wherein its coordination bond acceptor sites and XB donor sites are on the same molecular scaffold (i.e., an aromatic ring) without interfering with each other. We demonstrate that XBs play a fundamental role in the architectures and properties of the obtained coordination networks. In 3, XBs promote the formation of 2D supramolecular layers, which, by overlapping each other, allow the incorporation of 2-propanol as a guest molecule. In 4, XBs support the connection of the layers and are essential to firmly pin DMF solvent molecules through I⋯O contacts, thus increasing the stability of the solvated systems
Critical temperature of interacting Bose gases in periodic potentials
The superfluid transition of a repulsive Bose gas in the presence of a sinusoidal potential which represents a simple-cubic optical lattice is investigated using quantum Monte Carlo simulations. At the average filling of one particle per well the critical temperature has a nonmonotonic dependence on the interaction strength, with an initial sharp increase and a rapid suppression at strong interactions in the vicinity of the Mott transition. In an optical lattice the positive shift of the transition is strongly enhanced compared to the homogenous gas. By varying the lattice filling we find a crossover from a regime where the optical lattice has the dominant effect to a regime where interactions dominate and the presence of the lattice potential becomes almost irrelevant
Chirality in halogen-bonded supramolecular architectures
Abstracts of the XXII IUCr Congres
Generalized Lagrangian of N = 1 supergravity and its canonical constraints with the real Ashtekar variable
We generalize the Lagrangian of N = 1 supergravity (SUGRA) by using an
arbitrary parameter , which corresponds to the inverse of Barbero's
parameter . This generalized Lagrangian involves the chiral one as a
special case of the value . We show that the generalized
Lagrangian gives the canonical formulation of N = 1 SUGRA with the real
Ashtekar variable after the 3+1 decomposition of spacetime. This canonical
formulation is also derived from those of the usual N = 1 SUGRA by performing
Barbero's type canonical transformation with an arbitrary parameter . We give some comments on the canonical formulation of the theory.Comment: 17 pages, LATE
2-Iodo-imidazolium receptor binds oxoanions via charge-assisted halogen bonding.
A detailed (1)H-NMR study of the anion binding properties of the 2-iodo-imidazolium receptor 1 in DMSO allows to fully attribute the observed affinities to strong charge-assisted C-IX(-) halogen bonding (XB). Stronger binding was observed for oxoanions over halides. Phosphate, in particular, binds to 1 with an association constant of ca. 10(3) M(-1), which is particularly high for a single X-bond. A remarkably short C-IO(-) contact is observed in the structure of the salt 1·H(2)PO(4)(-)
Recommended from our members
Validation issues: a view from the trenches
Most papers on model evaluation or assessment dealing with verification and validation discuss means and mechanisms by which outside parties can perform peer review to provide verification and establish the validity of models. Little attention is paid to activities performed by the user-modeling team itself to improve the ability of the model to provide information useful in the decision-making process, and to provide confidence that the information is meaningful. This paper presents a number of case histories describing the authors' experience with this type of model improvement activity, called internal validation. They have been convinced that internal validation schemes should be incorporated in the project description and that they be used in part to answer questions of formulation. They further recommend that modelers incorporate sufficient funding in their project plans to carry out this function
Tumor Location in the Head/Uncinate Process and Presence of Fibrosis Impair the Adequacy of Endoscopic Ultrasound-Guided Tissue Acquisition of Solid Pancreatic Tumors
Endoscopic ultrasound-guided tissue acquisition (EUS-TA) of solid pancreatic tumors shows optimal specificity despite fair sensitivity, with an overall suboptimal diagnostic yield. We aim to quantify the adequacy and accuracy of EUS-TA and assess predictive factors for success, focusing on the presence and degree of specimen fibrosis. All consecutive EUS-TA procedures were retrieved, and the specimens were graded for sample adequacy and fibrosis. The results were evaluated according to patients’ and tumor characteristics and the EUS-TA technique. In total, 407 patients (59% male, 70 [63–77] year old) were included; sample adequacy and diagnostic accuracy were 90.2% and 94.7%, respectively. Fibrosis was significantly more represented in tumors located in the head/uncinate process (p = 0.001). Tumor location in the head/uncinate (OR 0.37 [0.14–0.99]), number of needle passes ≥ 3 (OR 4.53 [2.22–9.28]), and the use of cell block (OR 8.82 [3.23–23.8]) were independently related to adequacy. Severe fibrosis was independently related to false negative results (OR 8.37 [2.33–30.0]). Pancreatic tumors located in the head/uncinate process showed higher fibrosis, resulting in EUS-TA with lower sample adequacy and diagnostic accuracy. We maintain that three or more needle passes and cell block should be done to increase the diagnostic yield
Azobenzene-based difunctional halogen-bond donor: Towards the engineering of photoresponsive co-crystals
Halogen bonding is emerging as a powerful non-covalent interaction in the context of supramolecular photoresponsive materials design, particularly due to its high directionality. In order to obtain further insight into the solid-state features of halogen-bonded photoactive molecules, three halogen-bonded co-crystals containing an azobenzene-based difunctional halogen-bond donor molecule, (E)-bis(4-iodo-2,3,5,6-tetrafluorophenyl)diazene, C12F8I2N2, have been synthesized and structurally characterized by single-crystal X-ray diffraction. The crystal structure of the non-iodinated homologue (E)-bis(2,3,5,6- tetrafluorophenyl)diazene, C12H2F8N2, is also reported. It is demonstrated that the studied halogen-bond donor molecule is a reliable tecton for assembling halogen-bonded co-crystals with potential photoresponsive behaviour. The azo group is not involved in any specific intermolecular interactions in any of the co-crystals studied, which is an interesting feature in the context of enhanced photoisomerization behaviour and photoactive properties of the material systems. © 2014 International Union of Crystallography
- …