59 research outputs found

    Detectability of Earth-like Planets in Circumstellar Habitable Zones of Binary Star Systems with Sun-like Components

    Full text link
    Given the considerable percentage of stars that are members of binaries or stellar multiples in the Solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the alpha Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones, especially in close S-Type binary systems, can be rather inaccurate. Recent progress in this field, however, allows to identify regions around the star permitting permanent habitability. While the discovery of alpha Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogues in habitable zones. We provide analytical expressions for the maximum and RMS values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent habitable zones around both stars of the alpha Centauri system.Comment: accepted for publication in The Astrophysical Journa

    Dynamics of passing-stars-perturbed binary star systems

    Get PDF
    In this work, we investigate the dynamical effects of a sequence of close encounters over 200 Myr varying in the interval of 10000 -- 100000 au between a binary star system and passing stars with masses ranging from 0.1M⊙M_{\odot} to 10M⊙M_{\odot}. We focus on binaries consisting of two Sun-like stars with various orbital separations a0a_{\scriptscriptstyle 0} from 50 au to 200 au initially on circular-planar orbits. We treat the problem statistically since each sequence is cloned 1000 times. Our study shows that orbits of binaries initially at a0a_{\scriptscriptstyle 0} = 50 au will slightly be perturbed by each close encounter and exhibit a small deviation in eccentricity (+0.03) and in periapsis distance (+1 and -2 au) around the mean value. However increasing a0a_{\scriptscriptstyle 0} will drastically increase these variances: up to +0.45 in eccentricity and between +63 au and -106 au in periapsis, leading to a higher rate of disrupted binaries up to 50% after the sequence of close encounters. Even though the secondary star can remain bound to the primary, ∌\sim20% of the final orbits will have inclinations greater than 10∘^{\circ}. As planetary formation already takes place when stars are still members of their birth cluster, we show that the variances in eccentricity and periapsis distance of Jupiter- and Saturn-like planets will inversely decrease with a0a_{\scriptscriptstyle 0} after successive fly-bys. This leads to higher ejection rate at a0a_{\scriptscriptstyle 0} = 50 au but to a higher extent for Saturn-likes (60%) as those planets' apoapsis distances cross the critical stability distance for such binary separation.Comment: Accepted for publication (MNRAS

    An Analytic Method to determine Habitable Zones for S-Type Planetary Orbits in Binary Star Systems

    Full text link
    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical Habitable Zone arise. Do the radiative and gravitational perturbations of the second star influence the extent of the Habitable Zone significantly, or is it sufficient to consider the host-star only? In this article we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time independent analytical estimates and compare these to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of Habitable Zones towards the secondary in close binary systems.Comment: submitted to ApJ, status: accepte

    Circumstellar Habitable Zones of Binary Star Systems in the Solar Neighborhood

    Full text link
    Binary and multiple systems constitute more than half of the total stellar population in the Solar neighborhood (Kiseleva-Eggleton and Eggleton 2001). Their frequent occurrence as well as the fact that more than 70 (Schneider et al. 2011) planets have already been discovered in such configurations - most noteably the telluric companion of alpha Centauri B (Dumusque et al. 2012) - make them interesting targets in the search for habitable worlds. Recent studies (Eggl et al. 2012b, Forgan 2012) have shown, that despite the variations in gravitational and radiative environment, there are indeed circumstellar regions where planets can stay within habitable insolation limits on secular dynamical timescales. In this article we provide habitable zones for 19 near S-Type binary systems from the Hipparchos and WDS catalogues with semimajor axes between 1 and 100 AU. Hereby, we accounted for the combined dynamical and radiative influence of the second star on the Earth-like planet. Out of the 19 systems presented, 17 offer dynamically stable habitable zones around at least one component. The 17 potentially habitable systems contain 5 F, 3 G, 7 K and 16 M class stars. As their proximity to the Solar System (d < 31 pc) makes the selected binary stars exquisite targets for observational campaigns, we offer estimates on radial velocity, astrometric and transit signatures produced by habitable Earth-like planets in eccentric circumstellar orbits

    Conditions of Dynamical Stability for the HD 160691 Planetary System

    Full text link
    The orbits in the HD 160691 planetary system at first appeared highly unstable, but using the MEGNO and FLI techniques of global dynamics analysis in the orbital parameter space we have found a stabilizing mechanism that could be the key to its existence. In order to be dynamically stable, the HD 160691 planetary system has to satisfy the following conditions: (1) a 2:1 mean motion resonance, combined with (2) an apsidal secular resonance in (3) a configuration Pc(ap)−S−Pb(ap)P_{c}(ap) - S - P_{b}(ap) where the two apsidal lines are anti-aligned, and (4) specific conditions on the respective sizes of the eccentricities (high eccentricity for the outer orbit is in particular the most probable necessary condition). More generally, in this original orbital topology, where the resonance variables ξ1\theta_{1} and ξ3\theta_{3} librate about 180∘180^{\circ} while ξ2\theta_{2} librates about 0∘0^{\circ}, the HD 160691 system and its mechanism have revealed aspects of the 2:1 orbital resonances that have not been observed nor analyzed before. The present topology combined with the 2:1 resonance is indeed more wide-ranging than the particular case of the HD 160691 planetary system. It is a new theoretical possibility suitable for a stable regime despite relatively small semi-major axes with respect to the important masses in interactions.Comment: 21 pages, 8 figures, 1 table, accepted version to ApJ (31 Jul 2003

    Water delivery in the early Solar System

    Get PDF
    As part of the national scientific network 'Pathways to Habitable Worlds' the delivery of water onto terrestrial planets is a key question since water is essential for the development of life as we know it. After summarizing the state of the art we show some first results of the transport of water in the early Solar System for scattered main belt objects. Hereby we investigate the questions whether planetesimals and planetesimal fragments which have gained considerable inclination due to the strong dynamical interactions in the main belt region around 2 AU can be efficient water transporting vessels. The Hungaria asteroid group is the best example that such scenarios are realistic. Assuming that the gas giants and the terrestrial planets are already formed, we monitor the collisions of scattered small bodies containing water (in the order of a few percent) with the terrestrial planets. Thus we are able to give a first estimate concerning the respective contribution of such bodies to the actual water content in the crust of the Earth

    Origin and evolution of the atmospheres of early Venus, Earth and Mars

    Get PDF
    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≄0.5 MEarth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun’s more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N2 atmospheres. The buildup of atmospheric N2, O2, and the role of greenhouse gases such as CO2 and CH4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth’s geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.PostprintPeer reviewe
    • 

    corecore