34 research outputs found

    Emotional content of an image attracts attention more than visually salient features in various signal-to-noise ratio conditions

    Get PDF
    Emotional images are processed in a prioritized manner, attracting attention almost immediately. In the present study we used eye tracking to reveal what type of feature within neutral, positive, and negative images attract early visual attention: semantics, visual saliency, or their interaction. Semantic regions of interest were selected by observers, while visual saliency was determined using the Graph-Based Visual Saliency model. Images were transformed by adding pink noise in several proportions to be presented in a sequence of increasing and decreasing clarity. Locations of the first two fixations were analyzed. The results showed dominance of semantic features over visual saliency in attracting attention. This dominance was linearly related to the signal-to-noise ratio. Semantic regions were fixated more often in emotional images than in neutral ones, if signal-to-noise ratio was high enough to allow participants to comprehend the gist of a scene. Visual saliency on its own did not attract attention above chance, even in the case of pure noise images. Regions both visually salient and semantically relevant attracted a similar amount of fixation compared to semantic regions alone, or even more in the case of neutral pictures. Results provide evidence for fast and robust detection of semantically relevant features

    The color red attracts attention in an emotional context : an ERP study

    Get PDF
    The color red is known to influence psychological functioning, having both negative (e.g., blood, fire, danger), and positive (e.g., sex, food) connotations. The aim of our study was to assess the attentional capture by red-colored images, and to explore the modulatory role of the emotional valence in this process, as postulated by Elliot and Maier (2012) color-in-context theory. Participants completed a dot-probe task with each cue comprising two images of equal valence and arousal, one containing a prominent red object and the other an object of different coloration. Reaction times were measured, as well as the event-related lateralizations of the EEG. Modulation of the lateralized components revealed that the color red captured and later held the attention in both positive and negative conditions, but not in a neutral condition. An overt motor response to the target stimulus was affected mainly by attention lingering over the visual field where the red cue had been flashed. However, a weak influence of the valence could still be detected in reaction times. Therefore, red seems to guide attention, specifically in emotionally-valenced circumstances, indicating that an emotional context can alter color’s impact both on attention and motor behavior

    Blue blood, red blood : how does the color of an emotional scene affect visual attention and pupil size?

    Get PDF
    The function of color in the processing of emotional scenes is not entirely clear. While there are studies showing that color matters in terms of the capture of covert attention by emotional stimuli, the impact of color on fixation patterns, reflecting overt attention, is unresolved. Studies on the role of color in evoking emotional response have also produced mixed results. Here, we aimed to explore how image color and content influence pupillary response and the engagement of overt visual attention. In the first experiment, we examined the pupillary reaction to neutral images (intact and phase scrambled) in three color variants (natural, abnormal, and grayscale). In the second experiment, we investigated the pupillary changes and fixation pattern in response to images of different valence (neutral, positive, and negative), again in three color versions. The results showed that pupillary responses were influenced by both content and the color of the images. The pupillary response to phase-scrambled images did not differ between the color versions. Intact neutral and positive images, but not negative ones, evoked smaller pupil responses if they were presented in abnormal colors rather than natural ones. The initial capture of attention by emotional content depended on the color version, whereas holding of attention was affected solely by the emotional valence. Thus, color changes the physiological response to images, particularly low-arousing ones, and modulates the initial engagement of attention by image conten

    Low-symptomatic skeletal muscle disease in patients with a cardiac disease – Diagnostic approach in skeletal muscle laminopathies

    Get PDF
    Mild skeletal muscle symptoms might be accompanied with severe cardiac disease, sometimes indicating a serious inherited disorder. Very often it is a cardiologist who refers a patient with cardiomyopathy and/or cardiac arrhythmia and discrete muscle disease for neurological consultation, which helps to establish a proper diagnosis. Here we present three families in which a diagnosis of skeletal muscle laminopathy was made after careful examination of the members, who presented with cardiac arrhythmia and/or heart failure and a mild skeletal muscle disease, which together with positive family history allowed to direct the molecular diagnostics and then provide appropriate treatment and counseling

    Depletion of Mcpip1 in murine myeloid cells results in intestinal dysbiosis followed by allergic inflammation

    Get PDF
    MCPIP1 (called also Regnase-1) is a negative regulator of inflammation. Knockout of the Zc3h12a gene, encoding Mcpip1 in cells of myeloid origin (Mcpip1MKOMcpip1^{MKO}), has a pathological effect on many organs. The aim of this study was to comprehensively analyze pathological changes in the skin caused by Mcpip1 deficiency in phagocytes with an emphasis on its molecular mechanism associated with microbiome dysbiosis. Mcpip1MKOMcpip1^{MKO} mice exhibited spontaneous wound formation on the skin. On a molecular level, the Th2-type immune response was predominantly characterized by an increase in Il5 and Il13 transcript levels, as well as eosinophil and mast cell infiltration. Irritation by DNFB led to a more severe skin contact allergy in Mcpip1MKOMcpip1^{MKO} mice. Allergic reactions on the skin were strongly influenced by gut dysbiosis and enhanced systemic dissemination of bacteria. This process was followed by activation of the C/EBP pathway in peripheral macrophages, leading to local changes in the cytokine microenvironment that promoted the Th2 response. A reduced bacterial load inhibited allergic inflammation, indicating the role of intestinal dysbiosis in the development of skin diseases. Our results clearly show that MCPIP1 in phagocytes is an essential negative regulator that controls the gut-skin axis

    Aberrant promoter methylation may be responsible for the control of CD146 (MCAM) gene expression during breast cancer progression

    Get PDF
    The CD146 (also known as MCAM, MUC-18, Mel-CAM) was initially reported on in 1987, as a protein crucial for melanoma invasion. Recently, it has been confirmed that CD146 is involved in progression and poor overall survival of many other cancers, including breast cancer. Importantly, in independent studies, CD146 was reported to be a trigger of epithelial to mesenchymal transition in breast cancer cells. The goal of our current study was to verify possible involvement of an epigenetic mechanism behind regulation of the CD146 expression in breast cancer cells, as it has been previously reported for prostate cancer. First, we analysed the response of breast cancer cells, varying in the initial CD146 mRNA and protein content, to an epigenetic modifier, 5-aza-2-deoxycytidine, and subsequently the methylation status of CD146 gene promoter was investigated, using direct bisulfite sequencing. We observed that treatment with a demethylating agent led to induction of CD146 expression in all analysed breast cancer cell lines, both at the mRNA and protein levels, which was accompanied by an elevated expression of selected mesenchymal markers. Importantly, CD146 gene promoter analysis showed aberrant CpG island methylation in 2 out of 3 studied breast cancer cells lines, indicating epigenetic regulation of the CD146 gene expression. In conclusion, our study revealed for the first time that aberrant methylation may be involved in expression control of CD146, a very potent EMT inducer in breast cancer cells. Altogether, the data obtained may provide basis for novel therapies, as well as diagnostic approaches enabling sensitive and very accurate detection of breast cancer cells.

    Disentangling brain activity related to the processing of emotional visual information and emotional arousal

    Get PDF
    Processing of emotional visual information engages cognitive functions and induces arousal. We aimed to examine the modulatory role of emotional valence on brain activations linked to the processing of visual information and those linked to arousal. Participants were scanned and their pupil size was measured while viewing negative and neutral images. The visual noise was added to the images in various proportions to parametrically manipulate the amount of visual information. Pupil size was used as an index of physiological arousal. We show that arousal induced by the negative images, as compared to the neutral ones, is primarily related to greater amygdala activity while increasing visibility of negative content to enhanced activity in the lateral occipital complex (LOC). We argue that more intense visual processing of negative scenes can occur irrespective of the level of arousal. It may suggest that higher areas of the visual stream are fine-tuned to process emotionally relevant objects. Both arousal and processing of emotional visual information modulated activity within the ventromedial prefrontal cortex (vmPFC). Overlapping activations within the vmPFC may reflect the integration of these aspects of emotional processing. Additionally, we show that emotionally-evoked pupil dilations are related to activations in the amygdala, vmPFC, and LOC

    Targeting the hypoxia pathway in malignant plasma cells by using 17-allylamino-17-demethoxygeldanamycin

    Get PDF
    Multiple myeloma (MM) is characterized as a clonal expansion of malignant plasma cells in the bone marrow, which is often associated with pancytopenia and osteolytic bone disease. Interestingly, myeloma-infiltrated bone marrow is considered to be hypoxic, providing selection pressure for a developing tumour. Since HSP90 was shown to participate in stabilization of the subunit of the key transcription factor HIF-1, which controls the hypoxic response, the aim of this study was to investigate the influence of a HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), on MM cells cultured under low oxygenation conditions. We confirmed that 17-AAG inhibits hypoxic induction of the HIF-1 target genes in malignant plasma cells and demonstrate the concentration range of severe hypoxia-specific cytotoxicity. Next, we selected the malignant plasma cells under severe hypoxia/re-oxygenation culture conditions in the presence or absence of 17-AAG and subsequently, the cells which survived were further expanded and analyzed. Interestingly, we have noticed significant changes in the survival and the response to anti-MM drugs between the parental cell lines and those selected in cyclic severe hypoxia in the presence and absence of 17-AAG. Importantly, we also observed that the lack of oxygen itself, irrespectively of HIF-1 inhibition, is the main/pivotal factor driving the selection process in the experiments presented here

    Studies of Streptococcus anginosus Virulence in Dictyostelium discoideum and Galleria mellonella Models

    Get PDF
    For many years, Streptococcus anginosus has been considered a commensal colonizing the oral cavity, as well as the gastrointestinal and genitourinary tracts. However, recent epidemiological and clinical data designate this bacterium as an emerging opportunistic pathogen. Despite the reported pathogenicity of S. anginosus, the molecular mechanism underpinning its virulence is poorly described. Therefore, our goal was to develop and optimize efficient and simple infection models that can be applied to examine the virulence of S. anginosus and to study host-pathogen interactions. Using 23 S. anginosus isolates collected from different infections, including severe and superficial infections, as well as an attenuated strain devoid of CppA, we demonstrate for the first time that Dictyostelium discoideum is a suitable model for initial, fast, and large-scale screening of virulence. Furthermore, we found that another nonvertebrate animal model, Galleria mellonella, can be used to study the pathogenesis of S. anginosus infection, with an emphasis on the interactions between the pathogen and host innate immunity. Examining the profile of immune defense genes, including antimicrobial peptides, opsonins, regulators of nodulation, and inhibitors of proteases, by quantitative PCR (qPCR) we identified different immune response profiles depending on the S. anginosus strain. Using these models, we show that S. anginosus is resistant to the bactericidal activity of phagocytes, a phenomenon confirmed using human neutrophils. Notably, since we found that the data from these models corresponded to the clinical severity of infection, we propose their further application to studies of the virulence of S. anginosus

    Effects of scene properties and emotional valence on brain activations : a fixation-related fMRI study

    Get PDF
    Temporal and spatial characteristics of fixations are affected by image properties, including high-level scene characteristics, such as object-background composition, and low-level physical characteristics, such as image clarity. The influence of these factors is modulated by the emotional content of an image. Here, we aimed to establish whether brain correlates of fixations reflect these modulatory effects. To this end, we simultaneously scanned participants and measured their eye movements, while presenting negative and neutral images in various image clarity conditions, with controlled object-background composition. The fMRI data were analyzed using a novel fixation-based event-related (FIBER) method, which allows the tracking of brain activity linked to individual fixations. The results revealed that fixating an emotional object was linked to greater deactivation in the right lingual gyrus than fixating the background of an emotional image, while no difference between object and background was found for neutral images. We suggest that deactivation in the lingual gyrus might be linked to inhibition of saccade execution. This was supported by fixation duration results, which showed that in the negative condition, fixations falling on the object were longer than those falling on the background. Furthermore, increase in the image clarity was correlated with fixation-related activity within the lateral occipital complex, the structure linked to object recognition. This correlation was significantly stronger for negative images, presumably due to greater deployment of attention towards emotional objects. Our eye-tracking results are in line with these observations, showing that the chance of fixating an object rose faster for negative images over neutral ones as the level of noise decreased. Overall, our study demonstrated that emotional value of an image changes the way that low and high-level scene properties affect the characteristics of fixations. The fixation-related brain activity is affected by the low-level scene properties and this impact differs between negative and neutral images. The high-level scene properties also affect brain correlates of fixations, but only in the case of the negative images
    corecore