78 research outputs found

    Proposal for the detection and braiding of Majorana fermions in a quantum spin Hall insulator

    Get PDF
    Seventh Framework Programme (FP7)Article / Letter to editorLeids Instituut Onderzoek Natuurkund

    Penetration of hot electrons through a cold disordered wire

    Full text link
    We study a penetration of an electron with high energy E<<T through strongly disordered wire of length L<<a (a being the localization length). Such an electron can loose, but not gain the energy, when hopping from one localized state to another. We have found a distribution function for the transmission coefficient t. The typical t remains exponentially small in L/a, but with the decrement, reduced compared to the case of direct elastic tunnelling. The distribution function has a relatively strong tail in the domain of anomalously high t; the average ~(a/L)^2 is controlled by rare configurations of disorder, corresponding to this tail.Comment: 4 pages, 5 figure

    Topological properties of superconducting junctions

    Full text link
    Motivated by recent developments in the field of one-dimensional topological superconductors, we investigate the topological properties of s-matrix of generic superconducting junctions where dimension should not play any role. We argue that for a finite junction the s-matrix is always topologically trivial. We resolve an apparent contradiction with the previous results by taking into account the low-energy resonant poles of s-matrix. Thus no common topological transition occur in a finite junction. We reveal a transition of a different kind that concerns the configuration of the resonant poles

    Zero-voltage conductance peak from weak antilocalization in a Majorana nanowire

    Get PDF
    We show that weak antilocalization by disorder competes with resonant Andreev reflection from a Majorana zero-mode to produce a zero-voltage conductance peak of order e^2/h in a superconducting nanowire. The phase conjugation needed for quantum interference to survive a disorder average is provided by particle-hole symmetry - in the absence of time-reversal symmetry and without requiring a topologically nontrivial phase. We identify methods to distinguish the Majorana resonance from the weak antilocalization effect.Comment: 13 pages, 8 figures. Addendum, February 2014: Appendix B shows results for weak antilocalization in the circular ensemble. (This appendix is not in the published version.

    Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions

    Full text link
    The rise of topological phases of matter is strongly connected to their potential to host Majorana bound states, a powerful ingredient in the search for a robust, topologically protected, quantum information processing. In order to produce such states, a method of choice is to induce superconductivity in topological insulators. The engineering of the interplay between superconductivity and the electronic properties of a topological insulator is a challenging task and it is consequently very important to understand the physics of simple superconducting devices such as Josephson junctions, in which new topological properties are expected to emerge. In this article, we review recent experiments investigating topological superconductivity in topological insulators, using microwave excitation and detection techniques. More precisely, we have fabricated and studied topological Josephson junctions made of HgTe weak links in contact with two Al or Nb contacts. In such devices, we have observed two signatures of the fractional Josephson effect, which is expected to emerge from topologically-protected gapless Andreev bound states. We first recall the theoretical background on topological Josephson junctions, then move to the experimental observations. Then, we assess the topological origin of the observed features and conclude with an outlook towards more advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017, published in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer

    Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device

    Full text link
    We report on the observation of excitation of Majorana fermions in a Nb-InSb nanowire quantum dot-Nb hybrid system. The InSb nanowire quantum dot is formed between the two Nb contacts by weak Schottky barriers and is thus in the regime of strong couplings to the contacts. Due to the proximity effect, the InSb nanowire segments covered by superconductor Nb contacts turn to superconductors with a superconducting energy gap Δ∗\Delta^*. Under an applied magnetic field larger than a critical value for which the Zeeman energy in the InSb nanowire is Ez∼Δ∗E_z\sim \Delta^*, the entire InSb nanowire is found to be in a nontrivial topological superconductor phase, supporting a pair of Majorana fermions, and Cooper pairs can transport between the superconductor Nb contacts via the Majorana fermion states. This transport process will be suppressed when the applied magnetic field becomes larger than a second critical value at which the transition to a trivial topological superconductor phase occurs in the system. This physical scenario has been observed in our experiment. We have found that the measured zero-bias conductance for our hybrid device shows a conductance plateau in a range of the applied magnetic field in quasi-particle Coulomb blockade regions.Comment: 7 pages, 4 figures, supplementary materials of 3 pages and 1 figur
    • …
    corecore