5 research outputs found

    Direct observation of the band gap transition in atomically thin ReS2_2

    Full text link
    ReS2_2 is considered as a promising candidate for novel electronic and sensor applications. The low crystal symmetry of the van der Waals compound ReS2_2 leads to a highly anisotropic optical, vibrational, and transport behavior. However, the details of the electronic band structure of this fascinating material are still largely unexplored. We present a momentum-resolved study of the electronic structure of monolayer, bilayer, and bulk ReS2_2 using k-space photoemission microscopy in combination with first-principles calculations. We demonstrate that the valence electrons in bulk ReS2_2 are - contrary to assumptions in recent literature - significantly delocalized across the van der Waals gap. Furthermore, we directly observe the evolution of the valence band dispersion as a function of the number of layers, revealing a significantly increased effective electron mass in single-layer crystals. We also find that only bilayer ReS2_2 has a direct band gap. Our results establish bilayer ReS2_2 as a advantageous building block for two-dimensional devices and van der Waals heterostructures

    Fermi Surface Manipulation by External Magnetic Field Demonstrated for a Prototypical Ferromagnet

    Get PDF
    Domníváme se, že podrobnosti blízkosti povrchové elektronické pásmového struktury prototypu fero magnet, Fe (001). Použití s vysokým rozlišením úhel rozlišené Fotoemisní spektroskopie, ukážeme otvory spin-orbitální indukované elektronické pásmové mezery v blízkosti Fermiho hladiny. Mezery kapela, a běžel tak Fermi povrchu, lze manipulovat změnou směru magnetizace remanentní. Účinek je řádově AE 1/4 100 meV a .DELTA.k 1/4 0.1 A-1. Ukážeme, dass die Pozorované disperze dominuje hromadně Složení pásky. Prvoprincipielních výpočty a jednokrokové výpočty foto emisí naznačují, že efekt udělal souvisí se změnami v elektronickém základním stavu a nikoli v důsledku procesu Fotoemisní sám. symetrie účinku naznačuje, dass die Pozorované elektronická hromadné stavy jsou ovlivněny přítomností povrch, který by mohl být z chápán jako vztahující se k Rashba typu efektu. Zjišťováním regiony v elektronická pásová struktura, kde přepínatelné pásové mezery dojde, budeme demonstrovat význam kovotlačitelského obíhají interakci i pro prvky, jako jsou lehké jako 3d feromagnetických magnety. Tyto výsledky nastavit nové paradigma pro Vyšetřování se točitorbita efektů v spintronických materiálů. Stejný postup by mohl být použit v bottom-up konstrukce přístrojů založené napřepínání mezer spin-oběžné dráze: jako je kontrola elektrického pole z magnetické anizotropie nebo tunelování anizotropní magnetoresistence.We consider the details of the near-surface electronic band structure of a prototypical ferromagnet, Fe(001). Using highresolution angle-resolved photoemission spectroscopy, we demonstrate openings of the spin-orbit-induced electronic band gaps near the Fermi level. The band gaps, and thus the Fermi surface, can be manipulated by changing the remanent magnetization direction. The effect is of the order of ΔE 1⁄4 100 meV and Δk 1⁄4 0.1 Å−1 . We show that the observed dispersions are dominated by the bulk band structure. First-principles calculations and one-step photoemission calculations suggest that the effect is related to changes in the electronic ground state and not caused by the photoemission process itself. The symmetry of the effect indicates that the observed electronic bulk states are influenced by the presence of the surface, which might be understood as related to a Rashba-type effect. By pinpointing the regions in the electronic band structure where the switchable band gaps occur, we demonstrate the significance of spin- orbit interaction even for elements as light as 3d ferromagnets. These results set a new paradigm for the investigations of spin-orbit effects in the spintronic materials. The same methodology could be used in the bottom-up design of the devices based on the switching of spin-orbit gaps such as electric-field control of magnetic anisotropy or tunneling anisotropic magnetoresistance
    corecore