17 research outputs found

    On the use of parataxonomy in biodiversity monitoring: a case study on wild flora

    Get PDF
    International audienceMonitoring programs that assess species-richness and turnover are now regarded as essential to document biodiversity loss worldwide. Implementation of such programs is impeded by a general decrease in the number of skilled naturalists. Here we studied how morphotypes, instead of species, might be used by unskilled participants (referred to as “volunteers”) to survey common plant communities. Our main questions were: (1) Can morphotypes be used as a robust estimator of species-richness (alpha-diversity) and assemblage turnover (Beta-diversity)? and (2) What is the robustness (reproducibility and repeatability) of such methods? Double inventories were performed on 150 plots in arable Weld margins, one by a non-expert using morphotypes, the other by a taxonomist using species. To test the robustness of morphotype identiWcation among participants, 20 additional plots were surveyed by eight volunteers using the same protocol. We showed that (1) the number of morphotypes identiWed by unskilled volunteers in a plot was always strongly correlated with species-richness. (2) Morphotypes were sensitive to diVerences among habitats but were less accurate than species to detect these diVerences. (3) Morphotype identiWcation varied signiWcantly within and between volunteers. Due to this lack of repeatability and reproducibility, parataxonomy cannot be considered a good surrogate for taxonomy. Nevertheless, assuming that morphotypes are identiWed with standardized methods, and that results are used only to evaluate gross species-richness but not species turnover, parataxonomy might be a valuable tool for rapid biodiversity assessment of common wild flora

    Familial Young-Onset Diabetes, Pre-Diabetes and Cardiovascular Disease Are Associated with Genetic Variants of DACH1 in Chinese

    Get PDF
    In Asia, young-onset type 2 diabetes (YOD) is characterized by obesity and increased risk for cardiovascular disease (CVD). In a genome-wide association study (GWAS) of 99 Chinese obese subjects with familial YOD diagnosed before 40-year-old and 101 controls, the T allele of rs1408888 in intron 1 of DACH1(Dachshund homolog 1) was associated with an odds ratio (OR) of 2.49(95% confidence intervals: 1.57-3.96, P = 8.4610(-5)). Amongst these subjects, we found reduced expression of DACH1 in peripheral blood mononuclear cells (PBMC) from 63 cases compared to 65 controls (P = 0.02). In a random cohort of 1468 cases and 1485 controls, amongst top 19 SNPs from GWAS, rs1408888 was associated with type 2 diabetes with a global P value of 0.0176 and confirmation in a multiethnic Asian case-control cohort (7370/7802) with an OR of 1.07(1.02-1.12, P-meta = 0.012). In 599 Chinese non-diabetic subjects, rs1408888 was linearly associated with systolic blood pressure and insulin resistance. In a case-control cohort (n = 953/953), rs1408888 was associated with an OR of 1.54(1.07-2.22, P = 0.019) for CVD in type 2 diabetes. In an autopsy series of 173 non-diabetic cases, TT genotype of rs1408888 was associated with an OR of 3.31(1.19-9.19, P = 0.0214) and 3.27(1.25-11.07, P = 0.0184) for coronary heart disease (CHD) and coronary arteriosclerosis. Bioinformatics analysis revealed that rs1408888 lies within regulatory elements of DACH1 implicated in islet development and insulin secretion. The T allele of rs1408888 of DACH1 was associated with YOD, prediabetes and CVD in Chinese

    Clinical and metabolic characteristics of a case-control cohort of Hong Kong Chinese Type 2 diabetic patients with or without cardiovascular disease (CVD) matched for age, sex and disease duration.

    No full text
    <p>Data are expressed in mean±SD or median(interquatile range) or n, %). <sup>*</sup><i>P</i> values and ORs were estimated by the logistic regression with adjustment for logarithm of eGFR.</p><p>Cardiovascular diseases was diagnosed based on clinical history and assessment at enrolment to the Hong Kong Diabetes Registry and/or subsequent events defined by the International Classification of Diseases, Ninth Revision (ICD-9), retrieved from the Hong Kong Death Registry and Hong Kong Hospital Authority (HA) Central Computer System. Coronary heart disease (CHD) was defined as myocardial infarction (ICD-9 code 410), ischemic heart disease (ICD-9 code 411-414) or death due to CHD (ICD-9 code 410-414). Stroke was defined as non-fatal (ICD-9 code 432-434, 436) or fatal ischemic stroke (ICD-9 code 432-438), or, hemorrhagic stroke as defined by fatal and non-fatal subarachnoid hemorrhage (ICD-9 code 430), intracerebral hemorrhage (ICD-9 code 431) or other/unspecified intracranial hemorrhage (ICD-9 code 432). Peripheral vascular disease (PVD) was defined as ankle-brachial ratio<0.9 using Doppler ultrasound scan, diabetes with peripheral circulatory disorders (ICD-9 code 250.7), gangrene (ICD-9 code 785.4), angiopathy in diseases classified elsewhere (ICD-9 code 443.81), peripheral vascular disease unspecified (ICD-9 code 443.9), other peripheral vascular shunt or bypass (procedure code 39.29), insertion of non-drug-eluting peripheral vessel stents (procedure code 39.90) or amputation of lower limb (procedure code 84.1) without a traumatic amputation diagnosis code (ICD-9 code 895-897).</p
    corecore