661 research outputs found
Structure of the near-surface layers of the Sun: asphericity and time variation
We present results on the structure of the near-surface layers of the Sun
obtained by inverting frequencies of high-degree solar modes from "ring
diagrams". We have results for eight epochs between June 1996 and October 2003.
The frequencies for each epoch were obtained from ring diagrams constructed
from MDI Dopplergrams spanning complete Carrington rotations. We find that
there is a substantial latitudinal variation of both sound speed and the
adiabatic index Gamma_1 in the outer 2% of the Sun. We find that both the
sound-speed and Gamma_1 profiles change with changes in the level of solar
activity. In addition, we also study differences between the northern and
southern hemispheres of the Sun and find a small asymmetry that appears to
reflect the difference in magnetic activity between the two hemispheres.Comment: To appear in ApJ (January 2007
The influence of anxiety on visual attention in climbing
Item does not contain fulltextThe object of the current study was to investigate anxiety-induced changes in movement and gaze behavior in novices on a climbing wall. Identical traverses were situated at high and low levels on a climbing wall to manipulate anxiety. In line with earlier studies, climbing times and movement times increased under anxiety. These changes were accompanied by similar changes in total and average
fixation duration and the number of fixations, which were primarily aimed at the holds used for climbing. In combination with these findings, a decrease in search rate provided evidence for a decrease in processing efficiency as anxiety increased
10,000 Standard Solar Models: a Monte Carlo Simulation
We have evolved 10,000 solar models using 21 input parameters that are
randomly drawn for each model from separate probability distributions for every
parameter. We use the results of these models to determine the theoretical
uncertainties in the predicted surface helium abundance, the profile of the
sound speed versus radius, the profile of the density versus radius, the depth
of the solar convective zone, the eight principal solar neutrino fluxes, and
the fractions of nuclear reactions that occur in the CNO cycle or in the three
branches of the p-p chains. We also determine the correlation coefficients of
the neutrino fluxes for use in analysis of solar neutrino oscillations. Our
calculations include the most accurate available input parameters, including
radiative opacity, equation of state, and nuclear cross sections. We
incorporate both the recently determined heavy element abundances recommended
by Asplund, Grevesse & Sauval (2005) and the older (higher) heavy element
abundances recommended by Grevesse & Sauval (1998). We present best-estimates
of many characteristics of the standard solar model for both sets of
recommended heavy element compositions.Comment: ** John N. Bahcall passed away on August 17, 2005. Manuscript has 60
pages including 10 figure
The time delay of the quadruple quasar RX J0911.4+0551
We present optical lightcurves of the gravitationally lensed components A
(=A1+A2+A3) and B of the quadruple quasar RX J0911.4+0551 (z = 2.80). The
observations were primarily obtained at the Nordic Optical Telescope between
1997 March and 2001 April and consist of 74 I-band data points for each
component. The data allow the measurement of a time delay of 146 +- 8 days (2
sigma) between A and B, with B as the leading component. This value is
significantly shorter than that predicted from simple models and indicates a
very large external shear. Mass models including the main lens galaxy and the
surrounding massive cluster of galaxies at z = 0.77, responsible for the
external shear, yield H_0 = 71 +- 4 (random, 2 sigma) +- 8 (systematic)
km/s/Mpc. The systematic model uncertainty is governed by the surface-mass
density (convergence) at the location of the multiple images.Comment: 12 pages, 3 figures, ApJL, in press (June 20, 2002
New Modeling of the Lensing Galaxy and Cluster of Q0957+561: Implications for the Global Value of the Hubble Constant
The gravitational lens 0957+561 is modeled utilizing recent observations of
the galaxy and the cluster as well as previous VLBI radio data which have been
re-analyzed recently. The galaxy is modeled by a power-law elliptical mass
density with a small core while the cluster is modeled by a non-singular
power-law sphere as indicated by recent observations. Using all of the current
available data, the best-fit model has a reduced chi-squared of approximately 6
where the chi-squared value is dominated by a small portion of the
observational constraints used; this value of the reduced chi-squared is
similar to that of the recent FGSE best-fit model by Barkana et al. However,
the derived value of the Hubble constant is significantly different from the
value derived from the FGSE model. We find that the value of the Hubble
constant is given by H_0 = 69 +18/-12 (1-K) and 74 +18/-17 (1-K) km/s/Mpc with
and without a constraint on the cluster's mass, respectively, where K is the
convergence of the cluster at the position of the galaxy and the range for each
value is defined by Delta chi-squared = reduced chi-squared. Presently, the
best achievable fit for this system is not as good as for PG 1115+080, which
also has recently been used to constrain the Hubble constant, and the
degeneracy is large. Possibilities for improving the fit and reducing the
degeneracy are discussed.Comment: 22 pages in aaspp style including 6 tables and 5 figures, ApJ in
press (Nov. 1st issue
An optical time-delay estimate for the double gravitational lens system B1600+434
We present optical I-band light curves of the gravitationally lensed double
QSO B1600+434 from observations obtained at the Nordic Optical Telescope (NOT)
between April 1998 and November 1999. The photometry has been performed by
simultaneous deconvolution of all the data frames, involving a numerical lens
galaxy model. Four methods have been applied to determine the time delay
between the two QSO components, giving a mean estimate of \Delta_t = 51+/-4
days (95% confidence level). This is the fourth optical time delay ever
measured. Adopting a Omega=0.3, Lambda=0 Universe and using the mass model of
Maller et al. (2000), this time-delay estimate yields a Hubble parameter of
H_0=52 (+14, -8) km s^-1 Mpc^-1 (95% confidence level) where the errors include
time-delay as well as model uncertainties. There are time-dependent offsets
between the two (appropriately shifted) light curves that indicate the presence
of external variations due to microlensing.Comment: 15 pages, 4 figures, accepted for publication in Ap
- …