141 research outputs found

    Efficient and reliable nonlocal damage models

    Get PDF
    We present an efficient and reliable approach for the numerical modelling of failure with nonlocal damage models. The two major numerical challenges––the strongly nonlinear, highly localized and parameter-dependent structural response of quasi-brittle materials, and the interaction between nonadjacent finite elements associated to nonlocality––are addressed in detail. Reliability of the numerical results is ensured by an h-adaptive strategy based on error estimation. We use a residual-type error estimator for nonlinear FE analysis based on local computations, which, at the same time, accounts for the nonlocality of the damage model. Efficiency is achieved by a proper combination of load-stepping control technique and iterative solver for the nonlinear equilibrium equations. A major issue is the computation of the consistent tangent matrix, which is nontrivial due to nonlocal interaction between Gauss points. With computational efficiency in mind, we also present a new nonlocal damage model based on the nonlocal average of displacements. For this new model, the consistent tangent matrix is considerably simpler to compute than for current models. The various ideas discussed in the paper are illustrated by means of three application examples: the uniaxial tension test, the three-point bending test and the single-edge notched beam test.Peer ReviewedPostprint (author’s final draft

    Numerical Simulations of Void Linkage in Model Materials using a Nonlocal Ductile Damage Approximation

    Full text link
    Experiments on the growth and linkage of 10 ÎĽm diameter holes laser drilled in high precision patterns into Al-plates were modelled with finite elements. The simulations used geometries identical to those of the experiments and incorporated ductile damage by element removal under the control of a ductile damage indicator based on the micromechanical studies of Rice and Tracey. A regularization of the problem was achieved through an integral-type nonlocal model based on the smoothing of the rate of a damage indicator D over a characteristic length L. The simulation does not predict the experimentally observed damage acceleration either in the case where no damage is included or when only a local damage model is used. However, the full three-dimensional simulations based on the nonlocal damage methodology do predict both the failure path and the failure strain at void linkage for almost all configurations studied. For the cases considered the critical parameter controlling the local deformations at void linkage was found to be the ratio between hole diameter and hole spacing

    The cohesive band model: A cohesive surface formulation with stress triaxiality

    Get PDF
    In the cohesive surface model cohesive tractions are transmitted across a two-dimensional surface, which is embedded in a three-dimensional continuum. The relevant kinematic quantities are the local crack opening displacement and the crack sliding displacement, but there is no kinematic quantity that represents the stretching of the fracture plane. As a consequence, in-plane stresses are absent, and fracture phenomena as splitting cracks in concrete and masonry, or crazing in polymers, which are governed by stress triaxiality, cannot be represented properly. In this paper we extend the cohesive surface model to include in-plane kinematic quantities. Since the full strain tensor is now available, a three-dimensional stress state can be computed in a straightforward manner. The cohesive band model is regarded as a subgrid scale fracture model, which has a small, yet finite thickness at the subgrid scale, but can be considered as having a zero thickness in the discretisation method that is used at the macroscopic scale. The standard cohesive surface formulation is obtained when the cohesive band width goes to zero. In principle, any discretisation method that can capture a discontinuity can be used, but partition-of-unity based finite element methods and isogeometric finite element analysis seem to have an advantage since they can naturally incorporate the continuum mechanics. When using interface finite elements, traction oscillations that can occur prior to the opening of a cohesive crack, persist for the cohesive band model. Example calculations show that Poisson contraction influences the results, since there is a coupling between the crack opening and the in-plane normal strain in the cohesive band. This coupling holds promise for capturing a variety of fracture phenomena, such as delamination buckling and splitting cracks, that are difficult, if not impossible, to describe within a conventional cohesive surface model. © 2013 Springer Science+Business Media Dordrecht

    Mathematical models of supersonic and intersonic crack propagation in linear elastodynamics

    Get PDF
    This paper presents mathematical models of supersonic and intersonic crack propagation exhibiting Mach type of shock wave patterns that closely resemble the growing body of experimental and computational evidence reported in recent years. The models are developed in the form of weak discontinuous solutions of the equations of motion for isotropic linear elasticity in two dimensions. Instead of the classical second order elastodynamics equations in terms of the displacement field, equivalent first order equations in terms of the evolution of velocity and displacement gradient fields are used together with their associated jump conditions across solution discontinuities. The paper postulates supersonic and intersonic steady-state crack propagation solutions consisting of regions of constant deformation and velocity separated by pressure and shear shock waves converging at the crack tip and obtains the necessary requirements for their existence. It shows that such mathematical solutions exist for significant ranges of material properties both in plane stress and plane strain. Both mode I and mode II fracture configurations are considered. In line with the linear elasticity theory used, the solutions obtained satisfy exact energy conservation, which implies that strain energy in the unfractured material is converted in its entirety into kinetic energy as the crack propagates. This neglects dissipation phenomena both in the material and in the creation of the new crack surface. This leads to the conclusion that fast crack propagation beyond the classical limit of the Rayleigh wave speed is a phenomenon dominated by the transfer of strain energy into kinetic energy rather than by the transfer into surface energy, which is the basis of Griffiths theory
    • …
    corecore