54 research outputs found
Speciation and Extinction Drive the Appearance of Directional Range Size Evolution in Phylogenies and the Fossil Record
The appearance of directional trends in the evolution of species range sizes can arise from stochastic models and need not imply the existence of underlying trends
A new dynamic null model for phylogenetic community structure
Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by allopatric speciation, colonisation and local extinction. Incorporating these processes fundamentally alters the structure of communities expected due to chance, with speciation leading to phylogenetic overdispersion compared to a classical statistical null model assuming equal probabilities of community membership. Applying this method to bird and primate communities in South America we show that patterns of phylogenetic overdispersion - often attributed to negative biotic interactions - are instead consistent with a species neutral model of allopatric speciation, colonisation and local extinction. Our findings provide a new null expectation for phylogenetic community patterns and highlight the importance of explicitly accounting for the dynamic history of assembly when testing the mechanisms governing community structure
Evolutionary dynamics of the elevational diversity gradient in passerine birds
These authors contributed equally: Paul van Els, Leonel Herrera-Alsina. Acknowledgements The research of P.v.E. was facilitated by the Adaptive Life Program of the Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering at the University of Groningen. L.H.-A. thanks the Consejo Nacional de Ciencia y Tecnología of Mexico for funding (CVU 385304 L). R.S.E. thanks the Netherlands Organization for Scientific Research (NWO) for financial support through a VICI grant. A.L.P. is funded by a Royal Society University Research Fellowship. We thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high-performance computing cluster.Peer reviewedPostprin
Disentangling the historical routes to community assembly in the global epicentre of biodiversity
Aim: The exceptional turnover in biota with elevation and number of species coexisting at any elevation makes tropical mountains hotspots of biodiversity. However, understanding the historical processes through which species arising in geographical isolation (i.e. allopatry) assemble along the same mountain slope (i.e. sympatry) remains a major challenge. Multiple models have been proposed including (1) the sorting of already elevationally divergent species, (2) the displacement of elevation upon secondary contact, potentially followed by convergence, or (3) elevational conservatism, in which ancestral elevational ranges are retained. However, the relative contribution of these processes to generating patterns of elevational overlap and turnover is unknown.
Location: Tropical mountains of Central- and South-America.
Time Period: The last 12 myr.
Major Taxa Studied: Birds.
Methods: We collate a dataset of 165 avian sister pairs containing estimates of phylogenetic age, geographical and regional elevational range overlap. We develop a framework based on continuous-time Markov models to infer the relative frequency of different historical pathways in explaining present-day overlap and turnover of sympatric species along elevational gradients.
Results: We show that turnover of closely related bird species across elevation can predominantly be explained by displacement of elevation ranges upon contact (81%) rather than elevational divergence in allopatry (19%). In contrast, overlap along elevation gradients is primarily (88%) explained by conservatism of elevational ranges rather than displacement followed by elevational expansion (12%).
Main Conclusions: Bird communities across elevation gradients are assembled through a mix of processes, including the sorting, displacement and conservatism of species elevation ranges. The dominant role of conservatism in explaining co-occurrence of species on mountain slopes rejects more complex scenarios requiring displacement followed by expansion. The ability of closely related species to coexist without elevational divergence provides a direct and faster pathway to sympatry and helps explain the exceptional species richness of tropical mountains
Risks to biodiversity from temperature overshoot pathways
Temperature overshoot pathways entail exceeding a specified global warming level (e.g. 1.5°C or 2°C) followed by a decline in warming, achieved through anthropogenically enhanced CO2 removal from the atmosphere. However, risks to biodiversity from temperature overshoot pathways are poorly described. Here, we explore biodiversity risks from overshoot by synthesizing existing knowledge and quantifying the dynamics of exposure and de-exposure to potentially dangerous temperatures for more than 30 000 species for a 2°C overshoot scenario. Our results suggest that climate risk to biodiversity from temperature overshoot pathways will arrive suddenly, but decrease only gradually. Peak exposure for biodiversity occurs around the same time as peak global warming, but the rate of de-exposure lags behind the temperature decline. While the global overshoot period lasts around 60 years, the duration of elevated exposure of marine and terrestrial biodiversity is substantially longer (around 100 and 130 years, respectively), with some ecological communities never returning to pre-overshoot exposure levels. Key biodiversity impacts may be irreversible and reliance on widespread CO2 removal to reduce warming poses additional risks to biodiversity through altered land use. Avoiding any temperature overshoot must be a priority for reducing biodiversity risks from climate change, followed by limiting the magnitude and duration of any overshoot. More integrated models that include direct and indirect impacts from overshoot are needed to inform policy. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'
Combined effects of bird extinctions and introductions in oceanic islands : Decreased functional diversity despite increased species richness
Aim We analyse the consequences of species extinctions and introductions on the functional diversity and composition of island bird assemblages. Specifically, we ask if introduced species have compensated the functional loss resulting from species extinctions. Location Seventy-four oceanic islands (> 100 km(2)) in the Atlantic, Pacific and Indian Oceans. Time period Late Holocene. Major taxa studied Terrestrial and freshwater bird species. Methods We compiled a species list per island (extinct and extant, native and introduced), and then compiled traits per species. We used single-trait analyses to assess the effects of past species extinctions and introductions on functional composition. Then, we used probabilistic hypervolumes in trait space to calculate functional richness and evenness of original versus present avifaunas of each island (and net change), and to estimate how functionally unique are extinct and introduced species on each island. Results The net effects of extinctions and introductions were: an increase in average species richness per island (alpha diversity), yet a decline in diversity across all islands (gamma diversity); an average increase in the prevalence of most functional traits, yet an average decline in functional richness and evenness, associated with the fact that extinct species were functionally more unique (when compared to extant natives) than introduced species. Main conclusions Introduced species are on average offsetting (and even surpassing) the losses of extinct species per island in terms of species richness, and they are increasing the prevalence of most functional traits. However, they are not compensating for the loss of functional richness due to extinctions. Current island bird assemblages are becoming functionally poorer, having lost unique species and being composed of functionally more redundant species. This is likely to have cascading repercussions on the functioning of island ecosystems. We highlight that taxonomic and functional biodiversity should be assessed simultaneously to understand the global impacts of human activities.Peer reviewe
The influence of ecological and geographic limits on the evolution of species distributions and diversity
This manuscript was enriched by constant discussions with members of Theoretical and Evolutionary Community Ecology. L.H.‐A. is supported by a grant from Consejo Nacional de Ciencia y Tecnologia (CVU 385304). R.S.E. thanks the Netherlands Organisation for Scientific Research (NWO) for funding through a VICI grant. We are grateful to the Editor and two anonymous reviewers for the suggestions made which greatly improved the manuscript.Peer reviewedPublisher PD
Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains
AIM:
Climate change causes shifts in species ranges globally. Terrestrial plant species often lag behind temperature shifts, and it is unclear to what extent animal-dispersed plants can track climate change. Here, we estimate the ability of bird-dispersed plant species to track future temperature change on a tropical mountain.
LOCATION:
Tropical elevational gradient (500–3500 m.a.s.l.) in the Manú biosphere reserve, Peru.
TIME PERIOD:
From 1960–1990 to 2061–2080.
TAXA:
Fleshy-fruited plants and avian frugivores.
METHODS:
Using simulations based on the functional traits of avian frugivores and fruiting plants, we quantified the number of long-distance dispersal (LDD) events that woody plant species would require to track projected temperature shifts on a tropical mountain by the year 2070 under different greenhouse gas emission scenarios [representative concentration pathway (RCP) 2.6, 4.5 and 8.5]. We applied this approach to 343 bird-dispersed woody plant species.
RESULTS:
Our simulations revealed that bird-dispersed plants differed in their climate-tracking ability, with large-fruited and canopy plants exhibiting a higher climate-tracking ability. Our simulations also suggested that even under scenarios of strong and intermediate mitigation of greenhouse gas emissions (RCP 2.6 and 4.5), sufficient upslope dispersal would require several LDD events by 2070, which is unlikely for the majority of woody plant species. Furthermore, the ability of plant species to track future changes in temperature increased in simulations with a low degree of trait matching between plants and birds, suggesting that plants in generalized seed-dispersal systems might be more resilient to climate change.
MAIN CONCLUSION:
Our study illustrates how the functional traits of plants and animals can inform predictive models of species dispersal and range shifts under climate change and suggests that the biodiversity of tropical mountain ecosystems is highly vulnerable to future warming. The increasing availability of functional trait data for plants and animals globally will allow parameterization of similar models for many other seed-dispersal systems
- …