65 research outputs found

    A perturbative approach to predict eye diagram degradation in differential interconnects subject to asymmetry and nonuniformity

    Get PDF
    This paper proposes a novel framework for the signal integrity (SI) analysis of differential interconnects affected by nonuniformity and geometrical asymmetry. The pertinent nonuniform transmission-line (TL) equations are solved in the frequency domain by means of a perturbation technique, which allows interpreting the resulting response degradation as a perturbation with respect to the response of a reference uniform differential line (DL) with averaged per-unit-length (p.u.l.) parameters. Following this interpretation, the problem is recast as a standard TL equation for the reference uniform line with additional equivalent distributed sources that account for the perturbative effect of asymmetric nonuniformity. This equivalent perturbation problem is solved iteratively in the frequency domain, and the corresponding time-domain behavior is obtained via inverse Fourier transform. Moreover, upon consideration that local perturbations negligibly impact on far-end differential mode (DM) quantities, the uniform DL model with averaged p.u.l. parameters is used for the SI performance evaluation of transmitted DM voltages in SPICE, showing that comparable results can be obtained while avoiding the cumbersome implementation of a nonuniform transmission line topology. The methodology is applied to the prediction of the eye diagram degradation for a 20 Gbps transmission through a microstrip DL subject to geometrical asymmetry and nonuniformity

    Compensating mode conversion due to bend discontinuities through intentional trace asymmetry

    Get PDF
    In this letter, a comparative analysis is carried out between the mechanism of mode conversion in differential microstrip lines due to bend discontinuities on one side and trace asymmetry on the other side. With the help of equivalent modal circuits, a theoretical basis is provided for the idea to compensate the undesired common mode (CM), due to the presence of the bend, by intentionally designing asymmetric traces. As an application example, the proposed CM-reduction strategy is used in conjunction with another recently-presented wideband CM suppression filter for differential microstrip lines. It is shown that the proposed solution enhances the overall CM-reduction performance of the filter by some decibels, while preserving its transmission properties

    Modelling and simulation of conducted emissions in the powertrain of electric vehicles

    Get PDF
    In the general framework of intelligent transportation, the increasing use of information communication technology in full or hybrid electric vehicles requires careful assessment of electromagnetic compatibility, with specific reference to the conducted emissions (CE) generated by the inverter in a broad frequency range (10 kHz-100 MHz). To this aim, this work reports a modelling approach for the prediction of CE in electric powertrains, which is based on circuit representation of each single subsystem, that is, the battery, the inverter, the three-phase synchronous motor, and the power buses composed of shielded cables. The proposed models are able to represent both low-frequency functional aspects and high-frequency parasitic effects of paramount importance for CE analysis, and can be implemented into a Simulation-Programme-with-Integrated-Circuit-Emphasis (SPICE) solver. The proposed modelling approach is exploited to simulate virtual CE measurements according to international standard CISPR 25, and to investigate the impact of setup features, including grounding connections of shields, the propagation of CE in electrically long power buses, the operating point (power, torque, speed) of the motor-drive system

    Upper bound of overvoltage peak induced in power line network above lossless ground due to radiated electromagnetic disturbances

    Get PDF
    This paper deals with the assessment of the maximal peak of the overvoltage induced in a power-line network due to the field-to-wire coupling from an external electromagnetic disturbance. A worst-case analysis is here combined with the transmission line model to find the terminal overvoltage, induce by radiated electromagnetic disturbances of constrained energy density and bandlimits. The approach was applied to canonic power line network topologies, from statistic viewpoint, it is demonstrated that dominant coupling can be ascribed to the branch containing the most twisted segments. Accordingly, efforts have been devoted to find analytical solution to overvoltage peak upper bound for the coupling-dominant zigzag branch. In this connection, both versatile implicit solution and approximated explicit expressions of the upper bound are formulated, which reveals the relations between the upper bound of zigzag branch and its segments, quantitively interpreting the effect of segment orientations and length. Finally, numerical simulations corroborate the model validity and suggest that the estimations of upper bound are sufficiently accurate for analyzing practical power line network. This proposed approach will be instructive for power system insulation coordination and protection design

    Modeling of imbalance in differential lines targeted to SPICE simulation

    Get PDF
    partially_open5siIn this paper, a SPICE model representative for the mode conversion occurring in differential lines affected by imbalance either of the line cross-section and the terminal networks is developed. The model is based on the assumption of weak imbalance and allows approximate prediction of modal quantities, through separate modeling of the contributions due to line and termination imbalance by controlled sources with (possibly) frequency dependent gain. The proposed SPICE model is used to perform worst-case prediction of undesired modal voltages induced at line terminals by mode conversion.openGrassi, Flavia; Wu, Xinglong; Yang, Yuehong; Spadacini, Giordano; Pignari, Sergio A.Grassi, Flavia; Wu, Xinglong; Yang, Yuehong; Spadacini, Giordano; Pignari, SERGIO AMEDE

    Perturbative reformulation of the stochastic Galerkin Method for statistical analysis of wiring structures with several random parameters

    Get PDF
    In this paper, a novel approach for statistical analysis of cable harnesses characterized by several random parameters is proposed, which is based on a perturbative reformulation of the well-known stochastic Galerkin method (SGM). With respect to the traditional SGM, the proposed method avoids the solution of an augmented multiconductor transmission line (MTL), whose dimensions may become prohibitive in case of structures characterized by several wires and random parameters. Namely, it resorts to the iterative and repeated solution of a MTL having the same number of wires as the original structure, where the effects of random variations of geometrical parameters are included by means of equivalent sources. The proposed approach is here applied to collect statistical information of voltages and currents at the terminations of a shielded cable. Through such an example, involving a large number of wires (7) and random variables (12), it is proven that the proposed method yields a significant reduction of computational time with respect to the traditional SGM, at the same time providing similar accuracy in the prediction of statistical moments

    Numerical Electromagnetic Modeling of Chemical Plants for the Assessment of Radio Frequency Ignition Hazards

    Get PDF
    Abstract In this work, electromagnetic simulation of electrically-large chemical plants is used to investigate RF ignition hazards. The proposed analysis is aimed at refining results and procedures detailed in the European Standard CLC/TR 50427, which foresees the use of elemental antennas (loops and half-wave dipoles) for the estimation, via closed-form approximated formulas, of the RF power induced by an impinging electromagnetic field

    Scattering parameters characterization of periodically nonuniform transmission lines with a perturbative technique

    Get PDF
    In this article, a novel procedure for the frequency-domain solution of nonuniform transmission lines (NUTLs) is presented. The procedure is based on a recently proposed perturbative technique, which is proven to be computationally more efficient than standard solution approaches, which are based on line subdivision into uniform cascaded sections. With respect to the original perturbation technique, the procedure proposed here offers more flexibility, as it provides a representation of the NUTL under analysis in terms of S and/or T parameters at its ports. Moreover, it retains the same prediction accuracy at the price of a slight increase in computational burden, which can be mitigated anyway through parallel computing. Furthermore, even without ad hoc (parallel) implementations, the proposed procedure outperforms other approaches to solve differential lines with partially or fully repetitive geometries. Namely, it assures accurate prediction of output quantities with reduced simulation time. This is proven by three application examples, namely, two differential trapezoidal tabbed lines (one with interdigital tabs and one with facing tabs), and a differential microstrip line with a varying common-mode (CM) impedance (as such reducing CM noise). Comparison with full-wave simulations allows assessing the prediction accuracy of the proposed procedure. Comparison with the aforementioned transmission-line-based solutions allows appreciating the enhanced computational efficiency

    A Possibilistic Approach for the Prediction of the Risk of Interference between Power and Signal Lines Onboard Satellites

    Get PDF
    This work presents a hybrid random/fuzzy approach for uncertainty quantification in electromagnetic modelling, which combines probability and possibility theory in order to properly account for both aleatory and epistemic uncertainty, respectively. In particular, a typical intrasystem electromagnetic-compatibility problem in aerospace applications is considered, where some parameters are affected by fabrication tolerances or other kinds of randomness (aleatory uncertainty) and others are inherently deterministic but unknown due to human's lack of knowledge (epistemic uncertainty). Namely, a differential-signal line in a satellite is subject to crosstalk due to a nearby dc power line carrying conducted emissions generated by a dc-dc converter in a wide frequency range (up to 100 MHz). The nonideal features of the signal line (e.g., weak unbalance of terminal loads) are treated as random variables (RVs), whereas the mutual position of signal and power line is characterized by possibility theory through suitable fuzzy variables. Such a hybrid approach allows deriving a general and exhaustive description of uncertainty of the target variable of interest, that is, the differential noise voltage induced in the signal line. The obtained results are compared versus a conventional Monte Carlo simulation where all parameters are treated as RVs, and the advantages of the proposed approach (in terms of completeness and richness of information gained about sensitivity of results) are highlighted
    • …
    corecore