
Perturbative Reformulation of the Stochastic
Galerkin Method for Statistical Analysis of Wiring

Structures with Several Random Parameters

Abstract—In this paper, a novel approach for statistical
analysis of cable harnesses characterized by several random
parameters is proposed, which is based on a perturbative
reformulation of the well-known Stochastic Galerkin Method
(SGM). With respect to traditional SGM, the proposed method
avoids the solution of an augmented multiconductor transmis-
sion line (MTL) whose dimensions may become prohibitive in
case of structures characterized by several wires and random
parameters. Namely, it resorts to iterative solution of MTLs
with the same number of wires of the original structure, where
effects due to random variation of geometrical parameters are
included by induced sources. The proposed approach is here
applied to collect statistical information of voltages and currents
at the terminations of a shielded cable. Through such an example,
involving a large number of wires (7) and random variables
(12), it is proven that the proposed method allows a significant
reduction of computational time with respect to traditional
SGM, assuring the same accuracy in the prediction of statistical
moments.

Index Terms—Multiconductor transmission lines, perturbation
technique, shielded cable, statistical analysis, stochastic Galerkin
method.

I. INTRODUCTION

Statistical techniques recently gained increasing attention
from the Electromagnetic Compatibility (EMC) community,
owing to the need to handle systems in which some parameters
may randomly vary either due to manufacturing tolerances
or due to uncertainty in the knowledge of their exact value.
This is, for instance, the case of complex wiring harnesses,
whose geometrical characteristics, such as precise position of
wires in the bundle, are often hard to be controlled [1–4].
Since these random variations may significantly impact EMC
performance, modeling and propagating the uncertainty asso-
ciated with these parameters become of paramount importance
in order to provide a statistical characterization (in terms of
statistical moments) of relevant electrical quantities. Towards
this goal, the standard approach, known as Monte Carlo (MC)
method, is to perform repeated simulations exploiting different
realizations of the system under analysis. However, in order
to achieve accuracy in the prediction of statistical moments,
a huge number of samples is required, and this can lead
to unacceptable computational time, unless the underlying
deterministic model is very simple. In order to overcome
such a limitation without degrading prediction accuracy, more
advanced statistical techniques have been recently proposed.
Among these, the Stochastic Galerkin Method (SGM) offers
characteristics particularly suited for accurate statistical as-

sessment of cables and interconnects with geometry affected
by uncertainty [5]. This method resorts to Polynomial Chaos
Expansion (PCE) of the random quantities of the problem, that
is per-unit-length (p.u.l.) parameters (input quantities) and line
voltages and currents (output quantities). These quantities are
expanded in series of orthogonal polynomials, and used to
derive an augmented, but deterministic, model of the original
system, whose solution directly provides statistical estimates
of the output variables, without requiring repeated simulations.
When applied to wiring structures characterized by a limited
number of wires and/or random variables, this technique was
proven to be very accurate and computationally efficient [6].
However, due to its intrusiveness, the computational burden
of SGM becomes prohibitive when the number of random
variables and/or conductors is very large. In order to overcome
the aforesaid limitation, this paper proposes an SGM reformu-
lation, which is obtained by combining the traditional SGM
with the perturbative technique recently proposed in [7], [8]
for the solution of nonuniform transmission lines. According to
this novel approach, solution of the augmented multiconductor
transmission line (MTL) model obtained by the SGM is
avoided, by converting such an augmented network into sub-
networks having the same number of wires of the original
structure. The solution is achieved iteratively, by including
effects due to random variability of geometrical parameters by
distributed current and voltage sources. Accuracy and compu-
tational efficiency of this hybrid procedure is here investigated
considering a shielded cable with random position of the inner
wires [9, 10] as an application example.

II. STRUCTURE UNDER ANALYSIS

Without loss of generality, we consider in this work the
shielded cable depicted in Fig. 1(a). The geometry was orig-
inally described in [9]. Later, this cable was stochastically
studied in [10]. The cable consists of seven coated wires, with
conductor radius rc and dielectric radius rd = 2rc. One wire
is located at the center of the shield, whereas the remaining
six wires lie symmetrically around the center at a radial
distance of d = 5rc. The relative permittivity of the dielectric
coating εr = 4. The shield radius is rsh = 10rc.1 The cable
is 4-meter long and uniform along its length. Without loss
of generality, in this work we consider a differential source

1Since only relative dimensions count, the value of rc is arbitrary.
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Fig. 1: Cross-section of the shielded cable under analysis (a);
cable configuration with terminations (b).

connected between wires no. 1 and no. 2, and 50-Ω loads
connected to each wire as depicted in Fig. 1(b).

For the stochastic analysis, the positions of the outer wires
(no. 2 to no. 7) are considered to be random. Namely, the hor-
izontal and vertical coordinates of these wires are uniformly
distributed within ±10% around their nominal values. The
total number of random variables is thus 12.

III. STATE-OF-THE-ART GALERKIN APPROACH

The frequency-domain equations for the cable under inves-
tigation read [11]:

d

dz
V(z, ω, ξ) = −jωL(ξ)I(z, ω, ξ), (1a)

d

dz
I(z, ω, ξ) = −jωC(ξ)V(z, ω, ξ), (1b)

where ω is the angular frequency, and L and C are the
pertinent p.u.l. inductance and capacitance matrices, respec-
tively. Vectors V = [V1, . . . , V7]T and I = [I1, . . . , I7]T

collect the line voltages and currents, respectively, whereas
vector ξ = [ξ1, . . . , ξ12] encompasses the random parameters
(i.e., the wire positions). The p.u.l. inductance and capacitance
matrices depend on ξ and they are therefore stochastic, as
a result of the variability of the wire positions. Because of
this randomness, wire voltages and currents are in turn also
stochastic.

The classical MC approach collects statistical information
by repeatedly solving (1) for multiple samples of the random
parameters. However, the MC analysis is rather slow due
to the non-negligible time required by the evaluation of the

p.u.l. parameters, and by the analysis of the correspond-
ing transmission-line configurations. In order to significantly
speed-up the p.u.l. parameter extraction, a third-order PCE
was calculated in [10] to statistically characterize the p.u.l.
parameters:

L =

454∑
k=0

Lkϕk(ξ) (2a)

C =

454∑
k=0

Ckϕk(ξ), (2b)

where the basis functions ϕk are multivariate Legendre poly-
nomials. From the PCE, relevant statistical information is read-
ily derived [12]. The number of 455 PCE coefficients results
from a third-order expansion with 12 random parameters.

Once the PCEs of p.u.l. parameters are obtained, equa-
tions (1) can be recast in terms of an augmented and deter-
ministic MTL-like equations by means of the SGM [6]:

d

dz
Ṽ(z, ω) = −jωL̃Ĩ(z, ω), (3a)

d

dz
Ĩ(z, ω) = −jωC̃Ṽ(z, ω), (3b)

where vectors Ṽ and Ĩ collect the PCE coefficients of the wire
voltages and currents, whereas the new p.u.l. matrices L̃ and C̃
are formed by a suitable combination of the PCE coefficients
in (2). By solving the deterministic MTL problem (3), a
statistical characterization of such voltages and currents in
terms of PCEs like (2) is obtained. Equation (3) is 455
times larger than (1), therefore being equivalent to a line
with 3185 conductors instead of 7! This is the so-called
“curse of dimensionality”, which reduces the efficiency of the
SGM for problems with high order and/or number of random
parameters.

IV. PROPOSED PERTURBATIVE GALERKIN APPROACH

In order to alleviate the computational burden of the direct
solution of (3) as a (rather huge) coupled MTL, a perturbation
technique is applied in order to solve the SGM problem (3) in
an iterative and decoupled manner. This perturbation technique
is a reformulation of the one originally proposed in [7, 8] for
the analysis of nonuniform MTLs.

The proposed approach starts by isolating the first compo-
nent in the PCEs (2), which corresponds to the average value
and is constant w.r.t. ξ, being ϕ0(ξ) = 1:

L = L0 +

454∑
k=1

Lkϕk(ξ) (4a)

C = C0 +

454∑
k=1

Ckϕk(ξ) (4b)



With this modification, the SGM produces

d

dz
Ṽ(z, ω) = −jω

L0

. . .
L0

 Ĩ(z, ω) − jω∆̃LĨ(z, ω)

(5a)

d

dz
Ĩ(z, ω) = −jω

C0

. . .
C0

 Ṽ(z, ω) − jω∆̃CṼ(z, ω),

(5b)

where the diagonal matrices in the r.h.s. are the result of
the Galerkin projection of the deterministic zero-order com-
ponents, whereas the augmented matrices ∆̃L and ∆̃C are
conceptually identical to L̃ and C̃ in (3). Yet, they do not
account for the aforementioned average contributions, but only
for the random displacement therefrom.

It should be noted that the norms of ∆̃L and ∆̃C are
expected to be (significantly) smaller than the norms of L0

and C0. This is because the expansions (2) are convergent,
and the norms of their coefficients decay exponentially to
zero [12]. This interpretation allows solving equation (5)
iteratively by resorting to a perturbation approach [7, 8]. By
denoting with the subscript m the solution at the mth iteration
step, equation (5) becomes

d

dz
Ṽm(z, ω)

= −jω

L0

. . .
L0

 Ĩm(z, ω) − jω∆̃LĨm−1(z, ω), (6a)

d

dz
Ĩm(z, ω)

= −jω

C0

. . .
C0

 Ṽm(z, ω) − jω∆̃CṼm−1(z, ω).

(6b)

The above equation is equivalent to an MTL with distributed
sources (cfr. [11]). It is important to remark that such dis-
tributed sources depend only on the solution at the previous
iteration step, and they are therefore known when solving (6)
at step m. Moreover, the MTL is now described by block
diagonal p.u.l. matrices, which allows solving each block
independently by considering

d

dz
Vk,m(z, ω) = − jωL0Ik,m(ω) + VFk,m(z, ω), (7a)

d

dz
Ik,m(z, ω) = − jωC0Vk,m(ω) + IFk,m(z, ω) (7b)

for k = 0, . . . , 454, where

VFk,m = [−jω∆̃Lk Ĩk,m−1(z, ω)]kth row block (8a)

IFk,m = [−jω∆̃CkṼk,m−1(z, ω)]kth row block (8b)

The problem (6) is solved for increasing m starting from
null equivalent sources and updating them with (8), until the
solution has converged within a given tolerance (0.1% in this
paper). Thereafter, the vectors of PCE coefficients Ṽ and Ĩ are
obtained as the sum of all the computed perturbation terms.

The new proposed approach requires the solution of MK
equivalent MTL problems of size n (i.e., the number of
conductors of the original transmission line), with M the
total number of perturbation steps and K the number of
PCE coefficients. This is opposed to the single simulation
of an MTL of size nK. Therefore, although the number
of perturbations M may vary with the frequency and with
the amount of variation in the line parameters, the proposed
method is expected to outperform the classical SGM when the
number of conductors and/or PCE coefficients is large, as is
the case of the shielded cable of Fig. 1, for which n = 7 and
K = 455.

V. NUMERICAL RESULTS AND VALIDATION

In this section, the proposed perturbative technique is
compared against the classical SGM implementation in the
computation of the mean and standard deviation of some
explicative examples of voltages at the terminations of the
shielded cable of Fig. 1. The PCE of the p.u.l. inductance and
capacitance matrices are taken from [10]. Their augmented
counterparts L̃ and C̃ are readily obtained. The simulations
are performed on a PC with an Intel(R) Core(TM) i7-6700,
CPU running at 3.4 GHz and 16 GB of RAM.

As an example, Fig. 2 illustrates the common mode (CM)
voltage at the near end (top left) and the differential mode
(DM) voltage at the far end (top right) of the two conductors
used for differential signaling, as well as the induced single-
ended crosstalk voltages on conductors no. 3 at the near end
(bottom left) and no. 5 at the far end (bottom right). The
comparison between the classical SGM (solid gray lines) and
the proposed perturbative SGM (dashed black lines) shows
excellent agreement, thus proving the accuracy of the proposed
approach.

As far as the computational efficiency is concerned, the per-
turbative SGM only requires 2463 s to analyze 500 frequency
points, in contrast to the 24079 s required by the classical
SGM. A speed-up factor of roughly one order of magnitude
is thus achieved. This is remarkable when considering that
the perturbative approach requires to deal with additional
distributed sources, in analogy with the analysis of nonuniform
MTLs (cfr. [7]), even for a uniform MTL. For this reason, the
proposed method is expected to be even more beneficial for
nonuniform MTLs.

It should be mentioned that the time required to compute
the PCE of the p.u.l. parameters is excluded from the above
analysis, since it is a one-off preliminary step that is common
to both SGM-based approaches, and does not need to be re-
performed when different terminal configurations and/or cable
lengths are considered.
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Fig. 2: Mean and standard deviation of (a) DM voltage at far end of wires no. 1 and 2, (b) CM voltage at near end of wires
no. 1 and 2, (c) crosstalk voltage at near end of wire no. 3 and (d) crosstalk voltage at far end of wire no. 5 predicted by

classical SGM method and proposed approach.

VI. CONCLUSION

This work presented an hybrid technique for statistical
analysis of wiring harnesses affected by several random ge-
ometrical parameters. The proposed approach is based on a
perturbative reformulation of the traditional SGM, and allows
mantaining the size of the MTL networks to be solved equal
to the size of the original MTL structure under analysis.
According to such a perturbative approach, the first-order
PCE coefficient is used to evaluate an initial prediction of
relevant voltages/currents. Then this prediction is iteratively
refined by including distributed voltage and current sources
involving the higher-order PCE coefficients. The proposed
approach has been applied for statistical assessment of a
shielded cable involving a large number of wires (7), as well
as of random parameters (12). With respect to traditional
SGM, it has been proven that the proposed approach allows a
significant reduction of computational time, while retaining the
same prediction accuracy. Finally, it is worth mentioning that,
although here applied to uniform MTLs only, the proposed
approach looks promising (and even more beneficial) to handle
the practical-relevant case of wiring harnesses or interconnects
with cross-section randomly varying along the line length.

REFERENCES

[1] M. Wu, D. G. Beetner, T. H. Hubing, H. Ke, and S. Sun,
“Statistical prediction of reasonable worst-case crosstalk
in cable bundles,” IEEE Trans. Electromagn. Compat.,
vol. 51, no. 3, pp. 842–851, 2009.

[2] C. Jullien, P. Besnier, M. Dunand, and I. Junqua,
“Crosstalk analysis in complex aeronautical bundle,” in

Proc. 2013 Int. Symp. on Electromagn. Compat., Bruges,
Belgium, Sep. 2013, pp. 253–258.

[3] F. Paladian, P. Bonnet, and S. Lalléchère, “Modeling
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