158 research outputs found

    Graded index and randomly oriented core-shell silicon nanowires with broadband and wide angle antireflection

    Full text link
    Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm) and wide angle (from normal incidence to 60o) antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si) nanowires may provide a potential avenue to realize a broadband and wide angle antireflection laye

    Small Renal Masses: Incidental Diagnosis, Clinical Symptoms, and Prognostic Factors

    Get PDF
    Introduction. The small renal masses (SRMs) have increased over the past two decades due to more liberal use of imaging techniques. SRMs have allowed discussions regarding their prognostic, diagnosis, and therapeutic approach. Materials and methods. Clinical presentation, incidental diagnosis, and prognosis factors of SRMs are discussed in this review. Results. SRMs are defined as lesions less than 4 cm in diameter. SRM could be benign, and most malignant SMRs are low stage and low grade. Clinical symptoms like hematuria are very rare, being diagnosed by chance (incidental) in most cases. Size, stage, and grade are still the most consistent prognosis factors in (RCC). An enhanced contrast SRM that grows during active surveillance is clearly malignant, and its aggressive potential increases in those greater than 3 cm. Clear cell carcinoma is the most frequent cellular type of malign SRM. Conclusions. Only some SRMs are benign. The great majority of malign SRMs have good prognosis (low stage and grade, no metastasis) with open or laparoscopic surgical treatment (nephron sparing techniques). Active surveillance is an accepted attitude in selected cases

    Higher-order optical resonance node detection of integrated disk microresonator

    Full text link
    We have demonstrated higher-order optical resonance node detection by using an integrated disk microresonator from through port of the coupling bus waveguide. In addition to the fundamental mode, the disk resonator has higher-order whispering gallery modes. The excited second-order higher-order mode has a node at the position where the electromagnetic energy of the fundamental mode is close to a maximum. This high resolution measurement of optical resonance mode profile has a variety of applications for optical sensing and detection. The self-referencing characteristics of the two optical resonance modes have potential to achieve optical detection independent of external perturbation, such as temperature change
    corecore