370 research outputs found

    Mead and Husserl on the Self and Identification of the Subject

    Get PDF
    Out of many different strategies in the philosophy of the early 20th century the author compares two completely different philosophies: G. H. Mead’s social behaviorism and E. Husserl’s transcendental phenomenology with respect to the self-arising problem. For Mead, the initial point of his theory is the social conduct or person’s behavior, whereas for Husserl, the life of the isolated transcendental Ego is of greatest value. The author emphasizes, though the main ideas of both philosophers have different methodological grounds, one finds, that the matter of primary importance for them. This is the question of who is an executor of the social acts (Mead) and the transcendental phenomenological act (Husserl)? Through an analysis of the main ideas of both philosophers (‘I’ and ‘Me’ as principles of the subject by Mead, and intentionality, time analysis, and intersubjectivity by Husserl) the author demonstrates, firstly, how the question of self-identity is solved in both conceptions, and, secondly, how to argue the advantages of phenomenology. The article leads to the conclusion: methodologically Mead’s social behaviorism is relativistic, as far as his theory of subjectivity depends on the social context. Husserl’s method, despite its complexity, offers a clear subject structure and therefore can be regarded as more productive for the theory of self. Refs 15

    Compact Routing on Internet-Like Graphs

    Full text link
    The Thorup-Zwick (TZ) routing scheme is the first generic stretch-3 routing scheme delivering a nearly optimal local memory upper bound. Using both direct analysis and simulation, we calculate the stretch distribution of this routing scheme on random graphs with power-law node degree distributions, PkkγP_k \sim k^{-\gamma}. We find that the average stretch is very low and virtually independent of γ\gamma. In particular, for the Internet interdomain graph, γ2.1\gamma \sim 2.1, the average stretch is around 1.1, with up to 70% of paths being shortest. As the network grows, the average stretch slowly decreases. The routing table is very small, too. It is well below its upper bounds, and its size is around 50 records for 10410^4-node networks. Furthermore, we find that both the average shortest path length (i.e. distance) dˉ\bar{d} and width of the distance distribution σ\sigma observed in the real Internet inter-AS graph have values that are very close to the minimums of the average stretch in the dˉ\bar{d}- and σ\sigma-directions. This leads us to the discovery of a unique critical quasi-stationary point of the average TZ stretch as a function of dˉ\bar{d} and σ\sigma. The Internet distance distribution is located in a close neighborhood of this point. This observation suggests the analytical structure of the average stretch function may be an indirect indicator of some hidden optimization criteria influencing the Internet's interdomain topology evolution.Comment: 29 pages, 16 figure

    Network Geometry Inference using Common Neighbors

    Full text link
    We introduce and explore a new method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O(t4)O(t^4) running time to map a network of tt nodes, versus O(t3)O(t^3) in the link-based method. But we also develop a hybrid method with O(t3)O(t^3) running time, which combines the common-neighbors and link-based approaches, and explore a heuristic that reduces its running time further to O(t2)O(t^2), without significant reduction in the mapping accuracy. We apply this method to the Autonomous Systems (AS) Internet, and reveal how soft communities of ASes evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASes. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step towards understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections

    Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

    Full text link
    Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model (HSCM), belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or WW-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit

    Percolation in self-similar networks

    Get PDF
    We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.Comment: 4 pages, 3 figure

    Greedy Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric Spaces

    Full text link
    We show that complex (scale-free) network topologies naturally emerge from hyperbolic metric spaces. Hyperbolic geometry facilitates maximally efficient greedy forwarding in these networks. Greedy forwarding is topology-oblivious. Nevertheless, greedy packets find their destinations with 100% probability following almost optimal shortest paths. This remarkable efficiency sustains even in highly dynamic networks. Our findings suggest that forwarding information through complex networks, such as the Internet, is possible without the overhead of existing routing protocols, and may also find practical applications in overlay networks for tasks such as application-level routing, information sharing, and data distribution
    corecore