225 research outputs found

    Circadian influences on the habenula and their potential contribution to neuropsychiatric disorders

    Get PDF
    The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula. The lateral habenula is responsive to putative SCN output factors as well as light information conveyed to the perihabenula area. Neuronal activity in the lateral habenula is altered in depression and intriguingly disruptions in circadian rhythms can elevate risk of developing mental health disorders including depression. In this review, we will principally focus on how circadian and light signals affect the lateral habenula and evaluate the possibility that alteration in these influences contribute to mental health disorders

    Visual responses in the lateral geniculate evoked by Cx36-independent rod pathways

    Get PDF
    AbstractEmerging evidence indicates rods can communicate with retinal ganglion cells (RGCs) via pathways that do not involve gap-junctions. Here we investigated the significance of such pathways for central visual responses, using mice lacking a key gap junction protein (Cx36−/−) and carrying a mutation that disrupts cone phototransduction (Gnat2cpfl3). Electrophysiological recordings spanning the lateral geniculate revealed rod-mediated ON and OFF visual responses in virtually every cell from all major anatomical sub-compartments of this nucleus. Hence, we demonstrate that one or more classes of RGC receive input from Cx36-independent rod pathways and drive extensive ON and OFF responses across the visual thalamus

    Circadian and dark-pulse activation of orexin/hypocretin neurons

    Get PDF
    Temporal control of brain and behavioral states emerges as a consequence of the interaction between circadian and homeostatic neural circuits. This interaction permits the daily rhythm of sleep and wake, regulated in parallel by circadian cues originating from the suprachiasmatic nuclei (SCN) and arousal-promoting signals arising from the orexin-containing neurons in the tuberal hypothalamus (TH). Intriguingly, the SCN circadian clock can be reset by arousal-promoting stimuli while activation of orexin/hypocretin neurons is believed to be under circadian control, suggesting the existence of a reciprocal relationship. Unfortunately, since orexin neurons are themselves activated by locomotor promoting cues, it is unclear how these two systems interact to regulate behavioral rhythms. Here mice were placed in conditions of constant light, which suppressed locomotor activity, but also revealed a highly pronounced circadian pattern in orexin neuronal activation. Significantly, activation of orexin neurons in the medial and lateral TH occurred prior to the onset of sustained wheel-running activity. Moreover, exposure to a 6 h dark pulse during the subjective day, a stimulus that promotes arousal and phase advances behavioral rhythms, activated neurons in the medial and lateral TH including those containing orexin. Concurrently, this stimulus suppressed SCN activity while activating cells in the median raphe. In contrast, dark pulse exposure during the subjective night did not reset SCN-controlled behavioral rhythms and caused a transient suppression of neuronal activation in the TH. Collectively these results demonstrate, for the first time, pronounced circadian control of orexin neuron activation and implicate recruitment of orexin cells in dark pulse resetting of the SCN circadian clock

    Keeping time in the lamina terminalis: Novel oscillator properties of forebrain sensory circumventricular organs

    Get PDF
    Drinking behavior and osmotic regulatory mechanisms exhibit clear daily variation which is necessary for achieving the homeostatic osmolality. In mammals, the master clock in the brain's suprachiasmatic nuclei has long been held as the main driver of circadian (24 h) rhythms in physiology and behavior. However, rhythmic clock gene expression in other brain sites raises the possibility of local circadian control of neural activity and function. The subfornical organ (SFO) and the organum vasculosum laminae terminalis (OVLT) are two sensory circumventricular organs (sCVOs) that play key roles in the central control of thirst and water homeostasis, but the extent to which they are subject to intrinsic circadian control remains undefined. Using a combination of ex vivo bioluminescence and in vivo gene expression, we report for the first time that the SFO contains an unexpectedly robust autonomous clock with unusual spatiotemporal characteristics in core and noncore clock gene expression. Furthermore, putative single‐cell oscillators in the SFO and OVLT are strongly rhythmic and require action potential‐dependent communication to maintain synchrony. Our results reveal that these thirst‐controlling sCVOs possess intrinsic circadian timekeeping properties and raise the possibility that these contribute to daily regulation of drinking behavior

    Acute Suppressive and Long-Term Phase Modulation Actions of Orexin on the Mammalian Circadian Clock

    Get PDF
    Circadian and homeostatic neural circuits organize the temporal architecture of physiology and behavior, but knowledge of their interactions is imperfect. For example, neurons containing the neuropeptide orexin homeostatically control arousal and appetitive states, while neurons in the suprachiasmatic nuclei (SCN) function as the brain's master circadian clock. The SCN regulates orexin neurons so that they are much more active during the circadian night than the circadian day, but it is unclear whether the orexin neurons reciprocally regulate the SCN clock. Here we show both orexinergic innervation and expression of genes encoding orexin receptors (OX1 and OX2) in the mouse SCN, with OX1 being upregulated at dusk. Remarkably, we find through in vitro physiological recordings that orexin predominantly suppresses mouse SCN Period1 (Per1)-EGFP-expressing clock cells. The mechanisms underpinning these suppressions vary across the circadian cycle, from presynaptic modulation of inhibitory GABAergic signaling during the day to directly activating leak K+ currents at night. Orexin also augments the SCN clock-resetting effects of neuropeptide Y (NPY), another neurochemical correlate of arousal, and potentiates NPY's inhibition of SCN Per1-EGFP cells. These results build on emerging literature that challenge the widely held view that orexin signaling is exclusively excitatory and suggest new mechanisms for avoiding conflicts between circadian clock signals and homeostatic cues in the brain

    Global parameter search reveals design principles of the mammalian circadian clock

    Get PDF
    Background: Virtually all living organisms have evolved a circadian (~24 hour) clock that controls physiological and behavioural processes with exquisite precision throughout the day/night cycle. The suprachiasmatic nucleus (SCN), which generates these ~24 h rhythms in mammals, consists of several thousand neurons. Each neuron contains a gene-regulatory network generating molecular oscillations, and the individual neuron oscillations are synchronised by intercellular coupling, presumably via neurotransmitters. Although this basic mechanism is currently accepted and has been recapitulated in mathematical models, several fundamental questions about the design principles of the SCN remain little understood. For example, a remarkable property of the SCN is that the phase of the SCN rhythm resets rapidly after a 'jet lag' type experiment, i.e. when the light/ dark (LD) cycle is abruptly advanced or delayed by several hours. Results: Here, we describe an extensive parameter optimization of a previously constructed simplified model of the SCN in order to further understand its design principles. By examining the top 50 solutions from the parameter optimization, we show that the neurotransmitters' role in generating the molecular circadian rhythms is extremely important. In addition, we show that when a neurotransmitter drives the rhythm of a system of coupled damped oscillators, it exhibits very robust synchronization and is much more easily entrained to light/dark cycles. We were also able to recreate in our simulations the fast rhythm resetting seen after a 'jet lag' type experiment. Conclusion: Our work shows that a careful exploration of parameter space for even an extremely simplified model of the mammalian clock can reveal unexpected behaviours and non-trivial predictions. Our results suggest that the neurotransmitter feedback loop plays a crucial role in the robustness and phase resetting properties of the mammalian clock, even at the single neuron level
    corecore