2,015 research outputs found

    A Gaussian Weave for Kinematical Loop Quantum Gravity

    Get PDF
    Remarkable efforts in the study of the semi-classical regime of kinematical loop quantum gravity are currently underway. In this note, we construct a ``quasi-coherent'' weave state using Gaussian factors. In a similar fashion to some other proposals, this state is peaked in both the connection and the spin network basis. However, the state constructed here has the novel feature that, in the spin network basis, the main contribution for this state is given by the fundamental representation, independently of the value of the parameter that regulates the Gaussian width.Comment: 15 pages, 3 figures, Revtex file. Comments added and references updated. Final version to appear in IJMP-

    Gravitational waves from oscillating accretion tori: Comparison between different approaches

    Full text link
    Quasi-periodic oscillations of high density thick accretion disks orbiting a Schwarzschild black hole have been recently addressed as interesting sources of gravitational waves. The aim of this paper is to compare the gravitational waveforms emitted from these sources when computed using (variations of) the standard quadrupole formula and gauge-invariant metric perturbation theory. To this goal we evolve representative disk models using an existing general relativistic hydrodynamics code which has been previously employed in investigations of such astrophysical systems. Two are the main results of this work: First, for stable and marginally stable disks, no excitation of the black hole quasi-normal modes is found. Secondly, we provide a simple, relativistic modification of the Newtonian quadrupole formula which, in certain regimes, yields excellent agreement with the perturbative approach. This holds true as long as back-scattering of GWs is negligible. Otherwise, any functional form of the quadrupole formula yields systematic errors of the order of 10%.Comment: 6 pages and 3 figures, RevTex, accepted for publication in Phys. Rev.

    Group Field Theory: An overview

    Full text link
    We give a brief overview of the properties of a higher dimensional generalization of matrix model which arises naturally in the context of a background independent approach to quantum gravity, the so called group field theory. We show that this theory leads to a natural proposal for the physical scalar product of quantum gravity. We also show in which sense this theory provides a third quantization point of view on quantum gravity.Comment: 10 page

    Gauging kinematical and internal symmetry groups for extended systems: the Galilean one-time and two-times harmonic oscillators

    Get PDF
    The possible external couplings of an extended non-relativistic classical system are characterized by gauging its maximal dynamical symmetry group at the center-of-mass. The Galilean one-time and two-times harmonic oscillators are exploited as models. The following remarkable results are then obtained: 1) a peculiar form of interaction of the system as a whole with the external gauge fields; 2) a modification of the dynamical part of the symmetry transformations, which is needed to take into account the alteration of the dynamics itself, induced by the {\it gauge} fields. In particular, the Yang-Mills fields associated to the internal rotations have the effect of modifying the time derivative of the internal variables in a scheme of minimal coupling (introduction of an internal covariant derivative); 3) given their dynamical effect, the Yang-Mills fields associated to the internal rotations apparently define a sort of Galilean spin connection, while the Yang-Mills fields associated to the quadrupole momentum and to the internal energy have the effect of introducing a sort of dynamically induced internal metric in the relative space.Comment: 32 pages, LaTex using the IOP preprint macro package (ioplppt.sty available at: http://www.iop.org/). The file is available at: http://www.fis.unipr.it/papers/1995.html The file is a uuencoded tar gzip file with the IOP preprint style include

    Convective Excitation of Inertial Modes in Binary Neutron Star Mergers

    Full text link
    We present the first very long-term simulations (extending up to ~140 ms after merger) of binary neutron star mergers with piecewise polytropic equations of state and in full general relativity. Our simulations reveal that at a time of 30-50 ms after merger, parts of the star become convectively unstable, which triggers the excitation of inertial modes. The excited inertial modes are sustained up to several tens of milliseconds and are potentially observable by the planned third-generation gravitational-wave detectors at frequencies of a few kilohertz. Since inertial modes depend on the rotation rate of the star and they are triggered by a convective instability in the postmerger remnant, their detection in gravitational waves will provide a unique opportunity to probe the rotational and thermal state of the merger remnant. In addition, our findings have implications for the long-term evolution and stability of binary neutron star remnantsComment: 6 pages, 4 figure

    Counting surface states in the loop quantum gravity

    Full text link
    We adopt the point of view that (Riemannian) classical and (loop-based) quantum descriptions of geometry are macro- and micro-descriptions in the usual statistical mechanical sense. This gives rise to the notion of geometrical entropy, which is defined as the logarithm of the number of different quantum states which correspond to one and the same classical geometry configuration (macro-state). We apply this idea to gravitational degrees of freedom induced on an arbitrarily chosen in space 2-dimensional surface. Considering an `ensemble' of particularly simple quantum states, we show that the geometrical entropy S(A)S(A) corresponding to a macro-state specified by a total area AA of the surface is proportional to the area S(A)=αAS(A)=\alpha A, with α\alpha being approximately equal to 1/16πlp21/16\pi l_p^2. The result holds both for case of open and closed surfaces. We discuss briefly physical motivations for our choice of the ensemble of quantum states.Comment: This paper is a substantially modified version of the paper `The Bekenstein bound and non-perturbative quantum gravity'. Although the main result (i.e. the result of calculation of the number of quantum states that correspond to one and the same area of 2-d surface) remains unchanged, it is presented now from a different point of view. The new version contains a discussion both of the case of open and closed surfaces, and a discussion of a possibility to generalize the result obtained considering arbitrary surface quantum states. LaTeX, 21 pages, 6 figures adde

    Photons from quantized electric flux representations

    Get PDF
    The quantum theory of U(1) connections admits a diffeomorphism invariant representation in which the electric flux through any surface is quantized. This representation is the analog of the representation of quantum SU(2) theory used in loop quantum gravity. We investigate the relation between this representation, in which the basic excitations are `polymer-like', and the Fock representation, in which the basic excitations are wave-like photons. We show that normalizable states in the Fock space are associated with `distributional' states in the quantized electric flux representation. This work is motivated by the question of how wave-like gravitons in linearised gravity arise from polymer-like states in non-perturbative loop quantum gravity.Comment: 22 pages, no figure

    Continuum spin foam model for 3d gravity

    Full text link
    An example illustrating a continuum spin foam framework is presented. This covariant framework induces the kinematics of canonical loop quantization, and its dynamics is generated by a {\em renormalized} sum over colored polyhedra. Physically the example corresponds to 3d gravity with cosmological constant. Starting from a kinematical structure that accommodates local degrees of freedom and does not involve the choice of any background structure (e. g. triangulation), the dynamics reduces the field theory to have only global degrees of freedom. The result is {\em projectively} equivalent to the Turaev-Viro model.Comment: 12 pages, 3 figure

    Quantum tetrahedra and simplicial spin networks

    Full text link
    A new link between tetrahedra and the group SU(2) is pointed out: by associating to each face of a tetrahedron an irreducible unitary SU(2) representation and by imposing that the faces close, the concept of quantum tetrahedron is seen to emerge. The Hilbert space of the quantum tetrahedron is introduced and it is shown that, due to an uncertainty relation, the ``geometry of the tetrahedron'' exists only in the sense of ``mean geometry''. A kinematical model of quantum gauge theory is also proposed, which shares the advantages of the Loop Representation approach in handling in a simple way gauge- and diff-invariances at a quantum level, but is completely combinatorial. The concept of quantum tetrahedron finds a natural application in this model, giving a possible intepretation of SU(2) spin networks in terms of geometrical objects.Comment: 11 pages, LaTeX, 1 figure.ps, typos corrected, references added and updated, a note added, E-mail and postal addresses change
    corecore