31 research outputs found

    Phase Transition in Lattice Surface Systems with Gonihedric Action

    Full text link
    We prove the existence of an ordered low temperature phase in a model of soft-self-avoiding closed random surfaces on a cubic lattice by a suitable extension of Peierls contour method. The statistical weight of each surface configuration depends only on the mean extrinsic curvature and on an interaction term arising when two surfaces touch each other along some contour. The model was introduced by F.J. Wegner and G.K. Savvidy as a lattice version of the gonihedric string, which is an action for triangulated random surfaces.Comment: 17 pages, Postscript figures include

    Low temperature expansion of the gonihedric Ising model

    Get PDF
    We investigate a model of closed (d1)(d-1)-dimensional soft-self-avoiding random surfaces on a dd-dimensional cubic lattice. The energy of a surface configuration is given by E=J(n2+4kn4)E=J(n_{2}+4k n_{4}), where n2n_{2} is the number of edges, where two plaquettes meet at a right angle and n4n_{4} is the number of edges, where 4 plaquettes meet. This model can be represented as a Z2\Z_{2}-spin system with ferromagnetic nearest-neighbour-, antiferromagnetic next-nearest-neighbour- and plaquette-interaction. It corresponds to a special case of a general class of spin systems introduced by Wegner and Savvidy. Since there is no term proportional to the surface area, the bare surface tension of the model vanishes, in contrast to the ordinary Ising model. By a suitable adaption of Peierls argument, we prove the existence of infinitely many ordered low temperature phases for the case k=0k=0. A low temperature expansion of the free energy in 3 dimensions up to order x38x^{38} (x=eβJx={e}^{-\beta J}) shows, that for k>0k>0 only the ferromagnetic low temperature phases remain stable. An analysis of low temperature expansions up to order x44x^{44} for the magnetization, susceptibility and specific heat in 3 dimensions yields critical exponents, which are in agreement with previous results.Comment: 27 pages, Postscript figures include

    The Numerical Renormalization Group Method for correlated electrons

    Full text link
    The Numerical Renormalization Group method (NRG) has been developed by Wilson in the 1970's to investigate the Kondo problem. The NRG allows the non-perturbative calculation of static and dynamic properties for a variety of impurity models. In addition, this method has been recently generalized to lattice models within the Dynamical Mean Field Theory. This paper gives a brief historical overview of the development of the NRG and discusses its application to the Hubbard model; in particular the results for the Mott metal-insulator transition at low temperatures.Comment: 14 pages, 7 eps-figures include

    Reentrant charge ordering caused by polaron formation

    Full text link
    Based on a two-dimensional extended Hubbard model with electron-phonon interaction, we have studied the effect of polaron formation on the charge ordering (CO) transition. It is found that for fully ferromagnetically ordered spins the CO state may go through a process of appearance, collapse and reappearance with decreasing temperature. This is entirely due to a emperature-dependent polaron bandwidth. On the other hand, when a paramagnetic spin state is considered, only a simple reentrant behavior of the CO transition is found, which is only partly due to polaron effect. This model is proposed as an explanation of the observed reentrant behavior of the CO transition in the layered manganite LaSr2_2Mn2_2O7_7.Comment: 4 pages, 2 eps figures, revised version accepted by Phys. Rev. Let

    Finite temperature numerical renormalization group study of the Mott-transition

    Full text link
    Wilson's numerical renormalization group (NRG) method for the calculation of dynamic properties of impurity models is generalized to investigate the effective impurity model of the dynamical mean field theory at finite temperatures. We calculate the spectral function and self-energy for the Hubbard model on a Bethe lattice with infinite coordination number directly on the real frequency axis and investigate the phase diagram for the Mott-Hubbard metal-insulator transition. While for T<T_c approx 0.02W (W: bandwidth) we find hysteresis with first-order transitions both at U_c1 (defining the insulator to metal transition) and at U_c2 (defining the metal to insulator transition), at T>T_c there is a smooth crossover from metallic-like to insulating-like solutions.Comment: 10 pages, 9 eps-figure

    Phase diagram of the quarter-filled extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the ground-state phase diagram of the quarter-filled Hubbard ladder with nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. The ground-state is homogeneous at small V, a ``checkerboard'' charge--ordered insulator at large V and not too small on-site Coulomb repulsion U, and is phase-separated for moderate or large V and small U. The zero-temperature transition between the homogeneous and the charge-ordered phase is found to be second order. In both the homogeneous and the charge-ordered phases the existence of a spin gap mainly depends on the ratio of interchain to intrachain hopping. In the second part of the paper, we construct an effective Hamiltonian for the spin degrees of freedom in the strong-coupling charge-ordered regime which maps the system onto a frustrated spin chain. The opening of a spin gap is thus connected with spontaneous dimerization.Comment: 12 pages, 13 figures, submitted to PRB, presentation revised, new results added (metallic phase at small U and V

    Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods

    Full text link
    We theoretically describe the charge ordering (CO) metal-insulator transition based on a quasi-one-dimensional extended Hubbard model, and investigate the finite temperature (TT) properties across the transition temperature, TCOT_{\rm CO}. In order to calculate TT dependence of physical quantities such as the spin susceptibility and the electrical resistivity, both above and below TCOT_{\rm CO}, a theoretical scheme is developed which combines analytical methods with numerical calculations. We take advantage of the renormalization group equations derived from the effective bosonized Hamiltonian, where Lanczos exact diagonalization data are chosen as initial parameters, while the CO order parameter at finite-TT is determined by quantum Monte Carlo simulations. The results show that the spin susceptibility does not show a steep singularity at TCOT_{\rm CO}, and it slightly increases compared to the case without CO because of the suppression of the spin velocity. In contrast, the resistivity exhibits a sudden increase at TCOT_{\rm CO}, below which a characteristic TT dependence is observed. We also compare our results with experiments on molecular conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure

    Charge ordering and antiferromagnetic exchange in layered molecular crystals of the theta type

    Get PDF
    We consider the electronic properties of layered molecular crystals of the type theta-D2_2A, where A is an anion and D is a donor molecule such as BEDT-TTF [where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene)] which is arranged in the theta type pattern within the layers. We argue that the simplest strongly correlated electron model that can describe the rich phase diagram of these materials is the extended Hubbard model on the square lattice at a quarter filling. In the limit where the Coulomb repulsion on a single site is large, the nearest-neighbour Coulomb repulsion, V, plays a crucial role. When V is much larger than the intermolecular hopping integral t the ground state is an insulator with charge ordering. In this phase antiferromagnetism arises due to a novel fourth-order superexchange process around a plaquette on the square lattice. We argue that the charge ordered phase is destroyed below a critical non-zero value V, of the order of t. Slave boson theory is used to explicitly demonstrate this for the SU(N) generalisation of the model, in the large N limit. We also discuss the relevance of the model to the all-organic family beta''-(BEDT-TTF)2_2SF5_5YSO3_3 where Y = CH2_2CF2_2, CH2_2, CHF.Comment: 15 pages, 6 eps figure

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
    corecore